留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低频电压量值溯源关键技术研究

石照民 张江涛 潘仙林 宋莹

石照民,张江涛,潘仙林,等. 超低频电压量值溯源关键技术研究[J]. 计量科学与技术,2021, 65(5): 30-35 doi: 10.12338/j.issn.2096-9015.2020.9011
引用本文: 石照民,张江涛,潘仙林,等. 超低频电压量值溯源关键技术研究[J]. 计量科学与技术,2021, 65(5): 30-35 doi: 10.12338/j.issn.2096-9015.2020.9011
SHI Zhaomin, ZHANG Jiangtao, PAN Xianlin, SONG Ying. Research on Key Technologies of Ultra-Low Frequency Voltage Traceability[J]. Metrology Science and Technology, 2021, 65(5): 30-35. doi: 10.12338/j.issn.2096-9015.2020.9011
Citation: SHI Zhaomin, ZHANG Jiangtao, PAN Xianlin, SONG Ying. Research on Key Technologies of Ultra-Low Frequency Voltage Traceability[J]. Metrology Science and Technology, 2021, 65(5): 30-35. doi: 10.12338/j.issn.2096-9015.2020.9011

超低频电压量值溯源关键技术研究

doi: 10.12338/j.issn.2096-9015.2020.9011
基金项目: 国家重点研发计划资助项目(2016YFF0201204)
详细信息
    作者简介:

    石照民(1991-),中国计量科学研究院助理研究员,研究方向:超低频电压量值溯源及传递装置建立,宽频电量精密测量方法研究,邮箱:shizhm@nim.ac.cn

    通讯作者:

    张江涛(1972-),中国计量科学研究院研究员,研究方向:交流电量国家基准及传递装置建立、维护及应用,邮箱:zhangjt@nim.ac.cn

Research on Key Technologies of Ultra-Low Frequency Voltage Traceability

  • 摘要: 针对热电变换器无法实现超低频电压交直流转换的问题,基于热电变换器输出热电势的平方特性和等幅值正交正弦信号平方和恒等特性,结合双加热丝热电变换器,提出一种超低频电压交直流转换方法,将超低频电压溯源至直流电压基准,实现10 Hz及以下超低频电压的量值溯源。搭建超低频电压交直流转换系统,在10 Hz频率下交直流转换的标准不确定度不超过14 µV/V。设计验证实验,与平面多元热电变换器交直流转换结果进行对比,两种方法得到的结果具有较好的一致性,其不一致性在不确定度范围内。
  • 图  1  双加热丝热电变换器结构图

    Figure  1.  The structure of dual-heater TVC

    图  2  超低频电压交直流转换系统框图

    Figure  2.  The block diagram of AC-DC transfer system for ultra-low frequency voltage

    图  3  超低频电压交直流转换系统实物图

    注:图中所示的仪器设备仅为该系统中实验设备,非推荐设备。

    Figure  3.  Picture of AC-DC transfer system for ultra-low frequency voltage

    图  4  交直流转换结果对比系统图

    Figure  4.  The comparison system diagram of AC-DC transfer results

    图  5  旁证实验流程图

    Figure  5.  The flow chart of verification experiment

    表  1  10 Hz低频电压交直流转换不确定

    Table  1.   Uncertainty evaluation results of AC-DC transfer for low frequency voltage at 10 Hz (µV/V)

    u(δA)u(δAm)u(δP)u(δK)u(δR)u(δn)u
    不确定度85544614
    下载: 导出CSV
  • [1] LAIZ H, KLONZ M, KESSLER E, et al. Low-frequency AC–DC voltage transfer standards with new high-sensitivity and low-power-coefficient thin-film multijunction thermal converters[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(2): 350-354. doi: 10.1109/TIM.2003.810037
    [2] BUDOVSKY I, INGLIS B D. High-frequency AC-DC differences of NML single-junction thermal voltage converters[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 50(1): 101-105. doi: 10.1109/19.903885
    [3] BUDOVSKY I, ABIDIN A R B Z, YAN A Y K, et al. APMP international comparison of AC-DC transfer standards at the lowest attainable level of uncertainty[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(2): 795-798. doi: 10.1109/TIM.2004.843088
    [4] STOJANOVIC B, KLONZ M, LAIZ H, et al. AC–DC voltage transfer module with thin-film multijunction thermal converter[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(2): 355-358. doi: 10.1109/TIM.2003.810451
    [5] INGLIS B D. Standards for AC–DC transfer[J]. Metrologia, 1992, 29(2): 191-199. doi: 10.1088/0026-1394/29/2/007
    [6] KLONZ M, LAIZ H, KESSLER E. Development of thin-film multijunction thermal converters at PTB/IPHT[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 50(6): 1490-1498. doi: 10.1109/19.982933
    [7] AMAGAI Y, FUJIKI H, OKAWA K, et al. Low-frequency AC-DC differences of a series-parallel circuit of thermal converters[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 1907-1912. doi: 10.1109/TIM.2018.2882929
    [8] AMAGAI Y, FUJIKI H. Improved electrothermal simulation for low-frequency characterization of a single-junction thermal converter[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(12): 3011-3018. doi: 10.1109/TIM.2014.2313952
    [9] AMAGAI Y, FUJIKI H, SHIMIZUME K, et al. Improvements in the low-frequency characteristic and sensitivity of a thin-film multijunction thermal converter in vacuum[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(6): 1570-1575. doi: 10.1109/TIM.2014.2385133
    [10] 赵锦春. 低频超低频振动计量技术的现状与展望[J]. 中国计量, 2011(6): 94-96. doi: 10.3969/j.issn.1006-9364.2011.06.041
    [11] 于梅. 低频超低频振动计量技术的研究与展望[J]. 振动与冲击, 2007, 26(11): 83-86. doi: 10.3969/j.issn.1000-3835.2007.11.019
    [12] 宋勇. 关于超低频电压在高电压实验中运用的研究[J]. 电子技术与软件工程, 2015(21): 221-222.
    [13] 宋婀娜, 刘远义, 董翠莲. 一种超低频电压信号精密测量电路的研究[J]. 煤矿机械, 2004(12): 110-111. doi: 10.3969/j.issn.1003-0794.2004.12.051
    [14] 王荣. 超低频电压的测量[J]. 微计算机信息, 2003, 19(8): 45. doi: 10.3969/j.issn.1008-0570.2003.08.024
    [15] 赵新民, 张寅. 超低频电压的精密测量[J]. 电测与仪表, 1989(2): 3-6.
    [16] RVFENACHT A, BURROUGHS C J, DRESSELHAUS P D, et al. Differential sampling measurement of a 7 V RMS sine wave with a programmable Josephson voltage standard[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(6): 1587-1593. doi: 10.1109/TIM.2013.2237993
    [17] EKLUND G, BERGSTEN T, TARASSO V, et al. Determination of Transition Error Corrections for Low Frequency Stepwise-Approximated Josephson Sine Waves[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(7): 2399-2403. doi: 10.1109/TIM.2010.2101190
    [18] RVFENACHT A, BURROUGHS C J, BENZ S P, et al. Precision differential sampling measurements of low-frequency voltages synthesized with an AC programmable Josephson voltage standard[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(4): 809-815. doi: 10.1109/TIM.2008.2008087
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  465
  • HTML全文浏览量:  250
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-05-28
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回