留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单细胞质谱分析方法研究进展

谭思源 李曼莉 傅博强 戴新华 龚晓云

谭思源,李曼莉,傅博强,等. 单细胞质谱分析方法研究进展[J]. 计量科学与技术,2021, 65(5): 20-29, 13 doi: 10.12338/j.issn.2096-9015.2020.9021
引用本文: 谭思源,李曼莉,傅博强,等. 单细胞质谱分析方法研究进展[J]. 计量科学与技术,2021, 65(5): 20-29, 13 doi: 10.12338/j.issn.2096-9015.2020.9021
TAN Siyuan, LI Manli, FU Boqiang, DAI Xinhua, GONG Xiaoyun. Recent Advances in Single-Cell Mass Spectrometry Methods[J]. Metrology Science and Technology, 2021, 65(5): 20-29, 13. doi: 10.12338/j.issn.2096-9015.2020.9021
Citation: TAN Siyuan, LI Manli, FU Boqiang, DAI Xinhua, GONG Xiaoyun. Recent Advances in Single-Cell Mass Spectrometry Methods[J]. Metrology Science and Technology, 2021, 65(5): 20-29, 13. doi: 10.12338/j.issn.2096-9015.2020.9021

单细胞质谱分析方法研究进展

doi: 10.12338/j.issn.2096-9015.2020.9021
基金项目: 国家自然科学基金资助项目(21605135);国家自然科学基金资助项目(21927812)
详细信息
    作者简介:

    谭思源(1993-),中国计量科学研究院博士后,研究方向:单细胞质谱离子源研发,邮箱:tansy@nim.ac.cn

    通讯作者:

    龚晓云(1988-),中国计量科学研究院副研究员,研究方向:质谱离子源研发,邮箱:gxy@nim.ac.cn

Recent Advances in Single-Cell Mass Spectrometry Methods

  • 摘要: 细胞个体间的异质性对于生物体内各类生理功能的顺利完成十分重要。从单细胞尺度上对生物分子进行准确测量有助于获得在组织整体测量水平上被掩盖的微观生物学机制。由于单细胞中物质组成复杂、含量极低、不同组分的浓度差异显著,导致单细胞内生物分子的测量难度极大。质谱技术凭借其高灵敏度、高特异性、准确定量能力以及强大的化合物结构解析能力,近年来在单细胞分析领域获得广泛关注。目前,单细胞质谱分析方法的研究主要集中在离子化技术和相应的样品前处理方法上。根据离子化技术的不同,可将主流的质谱单细胞分析方法分为以下四类:纳升电喷雾离子化质谱法、激光解吸附离子化质谱法、二次离子质谱法和电感耦合等离子体质谱法。本文对近5年来基于上述四种离子化技术的单细胞质谱分析方法进行了归纳和评述,并对单细胞质谱分析方法在未来的计量科学发展进行了展望。
  • 图  1  单细胞内多组学分析研究

    Figure  1.  Multi-omics analysis in single cell

    图  2  单细胞局部电渗析采样及质谱分析流程图[12]

    Figure  2.  Schematic illustration of single-cell local electroosmotic sampling and mass spectrometry analysis [12]

    图  3  单细胞液滴微萃取和Pico-ESI-MS分析流程图[23]

    Figure  3.  Schematic illustration of single-cell droplet microextraction and Pico-ESI-MS analysis [23]

    图  4  单细胞采样和高效CE-nanoESI-MS分析流程图[31]

    Figure  4.  Schematic illustration of single-cell sampling and high performance CE-nanoESI-MS analysis [31]

    图  5  用于单细胞成像的VUVDI-MS平台[35]

    Figure  5.  The VUVDI-MS platform for single-cell imaging [35]

    图  6  用于单细胞成像的t-MALDI-2示意图[37]

    Figure  6.  Schematic illustration of t-MALDI-2 platform for single-cell imaging [37]

    图  7  单细胞MALDI-MS/ICC分析流程图[40]

    Figure  7.  Schematic illustration of single-cell MALDI-MS/ICC analysis [40]

    图  8  可视化TOF-SIMS的单细胞蛋白质和脂质分析[48]

    Figure  8.  Single-cell protein and lipid analysis based on visualized TOF-SIMS [48]

    图  9  三维OrbiSIMS质谱装置及成像分析[45]

    Figure  9.  Three-dimensional OrbiSIMS mass spectrometry device and imaging analysis [45]

    图  10  亚细胞药物与代谢物的nanoSIMS绝对定量分析[49]

    Figure  10.  Absolute quantitative analysis of subcellular drugs and metabolites based on NanoSIMS [49]

    图  11  LA-ICP-MS法测量不同单细胞中蛋白含量[59]

    Figure  11.  LA-ICP-MS method for measuring protein content in different single cells [59]

  • [1] ZENOBI R. Single-cell metabolomics: analytical and biological perspectives[J]. Science, 2013, 342(6163): 1201.
    [2] XIONG X, ZHANG S, FANG X, et al. Recent advances in mass spectrometry based single cell analysis methods[J]. SCIENTIA SINICA Chimica, 2016, 46(2): 133-152. doi: 10.1360/N032015-00068
    [3] JU-DUO W, JIA-FENG S, CHANG L, et al. Recent Advances in Single Cell Analysis Methods Based on Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2020, 48(8): 969-980. doi: 10.1016/S1872-2040(20)60038-X
    [4] YIN L, ZHANG Z, LIU Y, et al. Recent advances in single-cell analysis by mass spectrometry[J]. Analyst, 2019, 144(3): 824-845. doi: 10.1039/C8AN01190G
    [5] ZHANG L, VERTES A. Single‐cell mass spectrometry approaches to explore cellular heterogeneity[J]. Angewandte Chemie International Edition, 2018, 57(17): 4466-4477. doi: 10.1002/anie.201709719
    [6] ALI A, ABOULEILA Y, SHIMIZU Y, et al. Single-cell metabolomics by mass spectrometry: advances, challenges, and future applications[J]. TrAC Trends in Analytical Chemistry, 2019, 120: 115436. doi: 10.1016/j.trac.2019.02.033
    [7] GU C, ZHANG X, EWING A G. Comparison of disk and nano-tip electrodes for measurement of single-cell amperometry during exocytotic release[J]. Analytical Chemistry, 2020, 92(15): 10268-10273.
    [8] LI Q, CHEN P, FAN Y, et al. Multicolor fluorescence detection-based microfluidic device for single-cell metabolomics: simultaneous quantitation of multiple small molecules in primary liver cells[J]. Analytical Chemistry, 2016, 88(17): 8610-8616. doi: 10.1021/acs.analchem.6b01775
    [9] ARMBRECHT L, DITTRICH P S. Recent advances in the analysis of single cells[J]. Analytical Chemistry, 2017, 89(1): 2-21. doi: 10.1021/acs.analchem.6b04255
    [10] KALTASHOV I A, PAWLOWSKI J W, YANG W, et al. LC/MS at the whole protein level: Studies of biomolecular structure and interactions using native LC/MS and cross-path reactive chromatography (XP-RC) MS[J]. Methods, 2018, 144: 14-26. doi: 10.1016/j.ymeth.2018.04.019
    [11] WANG Y, SONG Y, TAO Y, et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level[J]. Analytical Chemistry, 2016, 88(19): 9443-9450. doi: 10.1021/acs.analchem.6b01602
    [12] YIN R, PRABHAKARAN V, LASKIN J. Quantitative extraction and mass spectrometry analysis at a single-cell level[J]. Analytical Chemistry, 2018, 90(13): 7937-7945. doi: 10.1021/acs.analchem.8b00551
    [13] LIU R, PAN N, ZHU Y, et al. T-probe: an integrated microscale device for online in situ single cell analysis and metabolic profiling using mass spectrometry[J]. Analytical Chemistry, 2018, 90(18): 11078-11085. doi: 10.1021/acs.analchem.8b02927
    [14] KOMPAUER M, HEILES S, SPENGLER B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution[J]. Nature Methods, 2017, 14(1): 90-96. doi: 10.1038/nmeth.4071
    [15] HUA X, LI H-W, LONG Y-T. Investigation of silver nanoparticle induced lipids changes on a single cell surface by time-of-flight secondary ion mass spectrometry[J]. Analytical Chemistry, 2018, 90(2): 1072-1076. doi: 10.1021/acs.analchem.7b04591
    [16] ZHANG Y, ZABINYAKOV N, MAJONIS D, et al. Tantalum oxide nanoparticle-based mass tag for mass cytometry[J]. Analytical Chemistry, 2020, 92(8): 5741-5749. doi: 10.1021/acs.analchem.9b04970
    [17] DUNCAN K D, FYRESTAM J, LANEKOFF I. Advances in mass spectrometry based single-cell metabolomics[J]. Analyst, 2019, 144(3): 782-793. doi: 10.1039/C8AN01581C
    [18] LAGEVEEN-KAMMEIJER G S, DE HAAN N, MOHAUPT P, et al. Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples[J]. Nature communications, 2019, 10(1): 1-8. doi: 10.1038/s41467-018-07882-8
    [19] CAO Y, ZHANG L, ZHANG J, et al. Single cell on-probe derivatization-noncontact nano carbon fiber ionization: unraveling cellular heterogeneity of fatty alcohol and sterol metabolites[J]. Analytical Chemistry, 2020, 92(12): 8378-8385.
    [20] OOMEN P E, AREF M A, KAYA I, et al. Chemical analysis of single cells[J]. Analytical Chemistry, 2018, 91(1): 588-621.
    [21] ROOT K, WITTWER Y, BARYLYUK K, et al. Insight into signal response of protein ions in native ESI-MS from the analysis of model mixtures of covalently linked protein oligomers[J]. Journal of The American Society for Mass Spectrometry, 2017, 28(9): 1863-1875. doi: 10.1007/s13361-017-1690-3
    [22] FUJII T, MATSUDA S, TEJEDOR M L, et al. Direct metabolomics for plant cells by live single-cell mass spectrometry[J]. Nature protocols, 2015, 10(9): 1445-1456. doi: 10.1038/nprot.2015.084
    [23] ZHANG X C, ZANG Q, ZHAO H, et al. Combination of droplet extraction and Pico-ESI-MS allows the identification of metabolites from single cancer cells[J]. Analytical Chemistry, 2018, 90(16): 9897-9903. doi: 10.1021/acs.analchem.8b02098
    [24] CONG Y, LIANG Y, MOTAMEDCHABOKI K, et al. Improved single-cell proteome coverage using narrow-bore packed nanoLC columns and ultrasensitive mass spectrometry[J]. Analytical Chemistry, 2020, 92(3): 2665-2671. doi: 10.1021/acs.analchem.9b04631
    [25] NAKASHIMA T, WADA H, MORITA S, et al. Single-cell metabolite profiling of stalk and glandular cells of intact trichomes with internal electrode capillary pressure probe electrospray ionization mass spectrometry[J]. Analytical Chemistry, 2016, 88(6): 3049-3057. doi: 10.1021/acs.analchem.5b03366
    [26] ZHANG X-C, WEI Z-W, GONG X-Y, et al. Integrated droplet-based microextraction with ESI-MS for removal of matrix interference in single-cell analysis[J]. Scientific reports, 2016, 6(1): 1-9. doi: 10.1038/srep24730
    [27] FENG J, ZHANG X, HUANG L, et al. Quantitation of glucose-phosphate in single cells by microwell-based nanoliter droplet microextraction and mass spectrometry[J]. Analytical Chemistry, 2019, 91(9): 5613-5620. doi: 10.1021/acs.analchem.8b05226
    [28] WEI Z, XIONG X, GUO C, et al. Pulsed direct current electrospray: enabling systematic analysis of small volume sample by boosting sample economy[J]. Analytical Chemistry, 2015, 87(22): 11242-11248. doi: 10.1021/acs.analchem.5b02115
    [29] ZHU Y, LIU R, YANG Z. Redesigning the T-probe for mass spectrometry analysis of online lysis of non-adherent single cells[J]. Analytica Chimica Acta, 2019, 1084: 53-59. doi: 10.1016/j.aca.2019.07.059
    [30] LOMBARD-BANEK C, MOODY S A, MANZINI M C, et al. Microsampling capillary electrophoresis mass spectrometry enables single-cell proteomics in complex tissues: Developing cell clones in live Xenopus laevis and Zebrafish embryos[J]. Analytical Chemistry, 2019, 91(7): 4797-4805. doi: 10.1021/acs.analchem.9b00345
    [31] KAWAI T, OTA N, OKADA K, et al. Ultrasensitive single cell metabolomics by capillary electrophoresis–mass spectrometry with a thin-walled tapered emitter and large-volume dual sample preconcentration[J]. Analytical Chemistry, 2019, 91(16): 10564-10572. doi: 10.1021/acs.analchem.9b01578
    [32] TROUILLON R, PASSARELLI M K, WANG J, et al. Chemical analysis of single cells[J]. Analytical Chemistry, 2013, 85(2): 522-542. doi: 10.1021/ac303290s
    [33] YA L, LU Z. Differences in ABCA1 R219K polymorphisms and serum indexes in Alzheimer and Parkinson Diseases in Northern China[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2017, 23: 4591.
    [34] ZENG J. Chinese curricula of medical science in the context of globalization[J]. International Journal of Higher Education, 2018, 7(2): 169-174. doi: 10.5430/ijhe.v7n2p169
    [35] WANG J, WANG Z, LIU F, et al. Vacuum ultraviolet laser desorption/ionization mass spectrometry imaging of single cells with submicron craters[J]. Analytical Chemistry, 2018, 90(16): 10009-10015. doi: 10.1021/acs.analchem.8b02478
    [36] WANG J, WANG Z, LIU F, et al. Mass spectrometry imaging of intact cholesterol in a mouse esophagus tissue section and mouse zygotes using VUV laser desorption/ionization method[J]. International Journal of Mass Spectrometry, 2018, 432: 9-13. doi: 10.1016/j.ijms.2018.06.008
    [37] NIEHAUS M, SOLTWISCH J, BELOV M, et al. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution[J]. Nature methods, 2019, 16(9): 925-931. doi: 10.1038/s41592-019-0536-2
    [38] URBAN P L, JEFIMOVS K, AMANTONICO A, et al. High-density micro-arrays for mass spectrometry[J]. Lab on a Chip, 2010, 10(23): 3206-3209. doi: 10.1039/c0lc00211a
    [39] GUILLAUME-GENTIL O, REY T, KIEFER P, et al. Single-cell mass spectrometry of metabolites extracted from live cells by fluidic force microscopy[J]. Analytical Chemistry, 2017, 89(9): 5017-5023. doi: 10.1021/acs.analchem.7b00367
    [40] NEUMANN E K, COMI T J, RUBAKHIN S S, et al. Lipid heterogeneity between astrocytes and neurons revealed by single‐cell MALDI‐MS combined with immunocytochemical classification[J]. Angewandte Chemie International Edition, 2019, 58(18): 5910-5914. doi: 10.1002/anie.201812892
    [41] SVATOS A. Single-cell metabolomics comes of age: new developments in mass spectrometry profiling and imaging[M]. ACS Publications. 2011.
    [42] LANNI E J, RUBAKHIN S S, SWEEDLER J V. Mass spectrometry imaging and profiling of single cells[J]. Journal of proteomics, 2012, 75(16): 5036-5051. doi: 10.1016/j.jprot.2012.03.017
    [43] ATHWAL H K, LOMBAERT I M. 3D organoid formation from the murine salivary gland cell line SIMS[J]. Bio-protocol, 2019, 9(19): e3386.
    [44] VOLLNHALS F, AUDINOT J-N, WIRTZ T, et al. Correlative microscopy combining secondary ion mass spectrometry and electron microscopy: comparison of intensity–hue–saturation and Laplacian pyramid methods for image fusion[J]. Analytical Chemistry, 2017, 89(20): 10702-10710. doi: 10.1021/acs.analchem.7b01256
    [45] PASSARELLI M K, PIRKL A, MOELLERS R, et al. The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power[J]. Nature Methods, 2017, 14(12): 1175-1183. doi: 10.1038/nmeth.4504
    [46] VANBELLINGEN Q P, ELIE N, ELLER M J, et al. Time‐of‐flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions[J]. Rapid Communications in Mass Spectrometry, 2015, 29(13): 1187-1195. doi: 10.1002/rcm.7210
    [47] TIAN H, SIX D A, KRUCKER T, et al. Subcellular chemical imaging of antibiotics in single bacteria using C60-secondary ion mass spectrometry[J]. Analytical Chemistry, 2017, 89(9): 5050-5057. doi: 10.1021/acs.analchem.7b00466
    [48] SHENG L, CAI L, WANG J, et al. Simultaneous imaging of newly synthesized proteins and lipids in single cell by TOF-SIMS[J]. International Journal of Mass Spectrometry, 2017, 421: 238-244. doi: 10.1016/j.ijms.2017.07.008
    [49] THOMEN A L, NAJAFINOBAR N, PENEN F, et al. Subcellular mass spectrometry imaging and absolute quantitative analysis across organelles[J]. ACS Nano, 2020, 14(4): 4316-4325. doi: 10.1021/acsnano.9b09804
    [50] LIU R, WU P, YANG L, et al. Inductively coupled plasma mass spectrometry‐based immunoassay: A review[J]. Mass Spectrometry Reviews, 2014, 33(5): 373-393. doi: 10.1002/mas.21391
    [51] PRöFROCK D, PRANGE A. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends[J]. Applied Spectroscopy, 2012, 66(8): 843-868. doi: 10.1366/12-06681
    [52] BINGS N H, BOGAERTS A, BROEKAERT J A. Atomic spectroscopy[J]. Analytical Chemistry, 2013, 85(2): 670-704. doi: 10.1021/ac3031459
    [53] LIU Z, LI X, XIAO G, et al. Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags: a review[J]. TrAC Trends in Analytical Chemistry, 2017, 93: 78-101. doi: 10.1016/j.trac.2017.05.008
    [54] POZEBON D, SCHEFFLER G, DRESSLER V. Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: a follow-up review[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(5): 890-919. doi: 10.1039/C7JA00026J
    [55] ZHANG C, WU F, ZHANG X. ICP-MS-based competitive immunoassay for the determination of total thyroxin in human serum[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(10): 1304-1307. doi: 10.1039/b205623b
    [56] BENDALL S C, SIMONDS E F, QIU P, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum[J]. Science, 2011, 332(6030): 687-696. doi: 10.1126/science.1198704
    [57] YAO H, ZHAO H, ZHAO X, et al. Label-free Mass Cytometry for Unveiling Cellular Metabolic Heterogeneity[J]. Analytical Chemistry, 2019, 91(15): 9777-9783. doi: 10.1021/acs.analchem.9b01419
    [58] GOOD Z, BORGES L, GONZALEZ N V, et al. Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells[J]. Nature Biotechnology, 2019, 37(3): 259-266. doi: 10.1038/s41587-019-0033-2
    [59] ZHANG X, LIU R, SHU Q, et al. Quantitative analysis of multiple proteins of different invasive tumor cell lines at the same single‐cell level[J]. Small, 2018, 14(17): 1703684. doi: 10.1002/smll.201703684
    [60] XU S, LIU M, BAI Y, et al. Multi‐Dimensional Organic Mass Cytometry: Simultaneous Analysis of Proteins and Metabolites on Single Cells[J]. Angewandte Chemie, 2021, 133(4): 1834-1840. doi: 10.1002/ange.202009682
    [61] XU S, XUE J, BAI Y, et al. High-Throughput Single-Cell Immunoassay in the Cellular Native Environment Using Online Desalting Dual-Spray Mass Spectrometry[J]. Analytical Chemistry, 2020, 92(24): 15854-15861. doi: 10.1021/acs.analchem.0c03167
    [62] FANG X, XIE J, CHU S, et al. Quadrupole-linear ion trap tandem mass spectrometry system for clinical biomarker analysis[J]. Engineering, 2021.
  • 加载中
图(11)
计量
  • 文章访问数:  1559
  • HTML全文浏览量:  420
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-05-10
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回