留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于衍射光学器件的芯片尺度激光冷却原子研究

段俊毅 朱振东 周亚东 刘小赤 茹宁 屈继峰

段俊毅,朱振东,周亚东,等. 基于衍射光学器件的芯片尺度激光冷却原子研究[J]. 计量科学与技术,2021, 65(10): 10-14, 40 doi: 10.12338/j.issn.2096-9015.2020.9025
引用本文: 段俊毅,朱振东,周亚东,等. 基于衍射光学器件的芯片尺度激光冷却原子研究[J]. 计量科学与技术,2021, 65(10): 10-14, 40 doi: 10.12338/j.issn.2096-9015.2020.9025
DUAN Junyi, ZHU Zhendong, ZHOU Yadong, LIU Xiaochi, RU Ning, QU Jifeng. Chip-Scale Laser-Cooling Atoms based on Diffractive Optical Elements[J]. Metrology Science and Technology, 2021, 65(10): 10-14, 40. doi: 10.12338/j.issn.2096-9015.2020.9025
Citation: DUAN Junyi, ZHU Zhendong, ZHOU Yadong, LIU Xiaochi, RU Ning, QU Jifeng. Chip-Scale Laser-Cooling Atoms based on Diffractive Optical Elements[J]. Metrology Science and Technology, 2021, 65(10): 10-14, 40. doi: 10.12338/j.issn.2096-9015.2020.9025

基于衍射光学器件的芯片尺度激光冷却原子研究

doi: 10.12338/j.issn.2096-9015.2020.9025
基金项目: 国家自然科学基金青年基金资助项目(62005261);国家自然科学基金资助项目(61975194)
详细信息
    作者简介:

    段俊毅(1989-),中国计量科学研究院博士后,研究方向:原子分子物理,邮箱:duanjy@nim.ac.cn

    通讯作者:

    刘小赤(1987-),中国计量科学研究院副研究员,研究方向:原子分子物理,邮箱:liuxc@nim.ac.cn

Chip-Scale Laser-Cooling Atoms based on Diffractive Optical Elements

  • 摘要: 冷原子系统为量子精密测量过程提供了一种接近于静止的测量介质,从而避免了热原子工作介质中存在的频移和展宽,使得测量结果更加精确。但是目前量子精密测量系统中原子冷却部分体积庞大、结构复杂,不利于实现可分发量子计量标准系统的小型化。为了解决现有磁光阱系统复杂的问题,采取衍射光栅芯片与原子冷却俘获相结合的方案,通过线性光栅对单束入射光波进行相位调制,成功实现芯片尺度下原子的冷却。微小型化磁光阱核心芯片的制备,搭建了光学结构简单的磁光阱系统,为未来进一步实现磁光阱整体系统微小型化奠定了坚实基础。
  • 图  1  光栅磁光阱结构示意图

    Figure  1.  Structure of a grating MOT

    图  2  光栅衍射原理图

    Figure  2.  Schematic diagram of grating diffraction

    图  3  光栅芯片样品及SEM结构观察结果

    Figure  3.  Structure of a grating chip under SEM

    图  4  冷却光及再泵浦光路示意图

    Figure  4.  Apparatus setup of the cooling and repump beam

    图  5  冷原子团荧光信号及入射光栅芯片的光路图示

    Figure  5.  Fluorescence of cold Rb atoms and the incident beam on the grating chip

    图  6  不同冷却光功率下冷原子荧光的情况

    Figure  6.  Fluorescence of cold Rb atoms with different incident cooling beam power

    表  1  光栅芯片衍射角及衍射效率测量结果

    Table  1.   Measurement results of the diffraction angle and efficiency of the grating chip

    光栅区域123
    衍射角θ34.8°34.5°34.3°
    衍射效率η43.5%41.1%42.2%
    下载: 导出CSV
  • [1] PHILLIPS W D, NOBEL LECTURE. Laser cooling and trapping of neutral atoms[J]. Reviews of Modern Physics, 1998, 70(3): 721. doi: 10.1103/RevModPhys.70.721
    [2] HE WEI. Towards miniaturized strontium optical lattice clock[D]. Birmingham: Diss. University of Birmingham, 2017.
    [3] Lee K I, Kim J A, Noh H R, et al. Single-beam atom trap in a pyramidal and conical hollow mirror[J]. Optics letters, 1996, 21(15): 1177-1179. doi: 10.1364/OL.21.001177
    [4] Vangeleyn, Matthieu, Griffin, et al. Single-laser, one beam, tetrahedral magneto-optical trap[J]. Optics express, 2009, 17(16): 13601-13608. doi: 10.1364/OE.17.013601
    [5] S Pollock, J P Cotter, A Laliotis, et al. Characteristics of integrated magneto-optical traps for atom chips[J]. New Journal of Physics, 2011, 13(4): 043029. doi: 10.1088/1367-2630/13/4/043029
    [6] Pala R A, White J, Barnard E, et al. Design of plasmonic thin‐film solar cells with broadband absorption enhancements[J]. Advanced materials, 2009, 21(34): 3504-3509. doi: 10.1002/adma.200900331
    [7] HEYDARI MEHDI, MOHAMMAD SABAEIAN. Plasmonic nanogratings on MIM and SOI thin-film solar cells: comparison and optimization of optical and electric enhancements[J]. Applied optics, 2017, 56(7): 1917-1924. doi: 10.1364/AO.56.001917
    [8] Mcgilligan J P, Griffin P F, Elvin R, et al. Grating chips for quantum technologies[J]. Scientific reports, 2017, 7(1): 1-7. doi: 10.1038/s41598-016-0028-x
    [9] C C Nshii, M Vangeleyn, J P Cotter, et al. A surface-patterned chip as a strong source of ultracold atoms for quantum technologies[J]. Nature nanotechnology, 2013, 8(5): 321. doi: 10.1038/nnano.2013.47
    [10] Riis E, Hoth G W, R Elvin, et al. Towards a compact atomic clock based on coherent population trapping and the grating magneto-optical trap[C]. Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology, 2019.
    [11] Elvin R, Hoth G W, Wright M, et al. Cold-atom clock based on a diffractive optic[J]. Optics Express, 2019, 27(26): 38359-38366. doi: 10.1364/OE.378632
    [12] Imhof E, Stuhl B K, Kasch B, et al. Two-dimensional grating magneto-optical trap[J]. Physical Review A, 2017, 96(3): 033636. doi: 10.1103/PhysRevA.96.033636
    [13] Barker D S, Norrgard E B, Klimov N N, et al. Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating[J]. Physical Review Applied, 2019, 11(6): 064023. doi: 10.1103/PhysRevApplied.11.064023
    [14] Hui Zhang, Tao Li, Ya Ling, et al. Microtrap on a concave grating reflector for atom trapping[J]. Chinese Physics B, 2016, 25(8): 087802. doi: 10.1088/1674-1056/25/8/087802
    [15] Ke C, Rui W, Zheng H, et al. Enhanced light trapping in thin-film silicon solar cells with concave quadratic bottom gratings[J]. Applied optics, 2018, 57(19): 5348-5355. doi: 10.1364/AO.57.005348
    [16] Chauhan N, Bose D, Puckett M, et al. Photonic Integrated Si3N4 Ultra-Large-Area Grating Waveguide MOT Interface for 3D Atomic Clock Laser Cooling[C]. 2019 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2019.
    [17] Cotter J P, Mcgilligan J P, Griffin P F, et al. Design and fabrication of diffractive atom chips for laser cooling and trapping[J]. Applied Physics B, 2016, 122(6): 172. doi: 10.1007/s00340-016-6415-y
    [18] VANIER J. Atomic clocks based on coherent population trapping: a review[J]. Applied Physics B, 2005, 81(4): 421-442. doi: 10.1007/s00340-005-1905-3
    [19] Xiaochi Liu, Eugene Ivanov, Valeriy I. Yudin, et al. Low-drift coherent population trapping clock based on laser-cooled atoms and high-coherence excitation fields[J]. Physical Review Applied, 2017, 8(5): 054001. doi: 10.1103/PhysRevApplied.8.054001
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  400
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回