留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新型纳米材料的荧光法快速测量谷胱甘肽

彭涛 焦学诗玛 郑丕苗 梁展玮 熊进城 戴新华

彭涛,焦学诗玛,郑丕苗,等. 基于新型纳米材料的荧光法快速测量谷胱甘肽[J]. 计量科学与技术,2021, 65(5): 40-45 doi: 10.12338/j.issn.2096-9015.2020.9026
引用本文: 彭涛,焦学诗玛,郑丕苗,等. 基于新型纳米材料的荧光法快速测量谷胱甘肽[J]. 计量科学与技术,2021, 65(5): 40-45 doi: 10.12338/j.issn.2096-9015.2020.9026
PENG Tao, JIAO Xueshima, ZHENG Pimiao, LIANG Zhanwei, XIONG Jincheng, DAI Xinhua. Novel Nanomaterials-Based Fluorescent Assay for Rapid Detection of Glutathione[J]. Metrology Science and Technology, 2021, 65(5): 40-45. doi: 10.12338/j.issn.2096-9015.2020.9026
Citation: PENG Tao, JIAO Xueshima, ZHENG Pimiao, LIANG Zhanwei, XIONG Jincheng, DAI Xinhua. Novel Nanomaterials-Based Fluorescent Assay for Rapid Detection of Glutathione[J]. Metrology Science and Technology, 2021, 65(5): 40-45. doi: 10.12338/j.issn.2096-9015.2020.9026

基于新型纳米材料的荧光法快速测量谷胱甘肽

doi: 10.12338/j.issn.2096-9015.2020.9026
基金项目: 中国计量科学研究院基本科研业务费(AKY1944,AKY1934);国家自然科学基金资助项目(31672600)
详细信息
    作者简介:

    彭涛(1990-),中国计量科学研究院博士后,研究方向:分析化学,邮箱:pengtao@nim.ac.cn

    通讯作者:

    戴新华(1973-),中国计量科学研究院研究员,研究方向:化学,邮箱:daixh@nim.ac.cn

Novel Nanomaterials-Based Fluorescent Assay for Rapid Detection of Glutathione

  • 摘要: 血清中谷胱甘肽(GSH)的含量水平与多种疾病的发生相关,本文成功建立了一种能快速灵敏测量GSH含量的荧光法。以二氧化硅纳米颗粒为载体和稳定剂,在超声条件下简单、快速地合成了二氧化锰包覆的二氧化硅纳米颗粒(SiO2@MnO2);以精氨酸和胸腺嘧啶为配体合成了具有高荧光量子产率的荧光金纳米簇(Arg/ATT/AuNCs)。实验结果表明GSH的强还原性可以分解MnO2释放出Mn(II)猝灭Arg/ATT/AuNCs的荧光,因此建立了基于SiO2@MnO2和Arg/ATT/AuNCs的荧光法测量血清中GSH。在最优条件下,该方法定量测量GSH的线性范围为2.5~20 nmol/L,最低检测限为1.23 nmol/L,优于已报道的类似方法。本方法测量低、中、高浓度GSH的相对扩展不确定度分别为8.6%、12.4%、18.8%(k = 2),准确度在87.0%~105.6%之间,满足GSH检测的需求,为血清中GSH含量的灵敏、准确测量提供了新技术。
  • 图  1  基于新型纳米材料的荧光法快速检测GSH原理示意图

    Figure  1.  Scheme of the novel nanomaterial-based fluorescent assay for GSH rapid detection

    图  2  SiO2@MnO2纳米颗粒表征结果图

    Figure  2.  SiO2@MnO2 characterization results

    图  3  Arg/ATT/AuNCs的表征结果图

    Figure  3.  Arg/ATT/AuNCs characterization results

    图  4  GSH、SiO2@MnO2以及两者的混合液加入到Arg/ATT/AuNCs中的荧光发射光谱图,内嵌图为在紫外灯下四种溶液体系的荧光成像

    Figure  4.  The spectrum of Arg/ATT/AuNCs (green) with GSH (blue), SiO2@MnO2(red) and both of them (black). The inset shows the fluorescence imaging of the four solution under UV-Vis

    图  5  参数优化

    Figure  5.  Parameter optimization

    图  6  血清样品中不同含量GSH的检测

    Figure  6.  Detection of GSH with different concentration in serum samples

    表  1  血清样品中GSH的测量准确度和精密度(n=3)

    Table  1.   The accuracy and precision of GSH measurement in serum samples (n=3)

    样品检测浓度
    (nmol/L)
    添加浓度
    (nmol/L)
    平均回收
    率(%)
    RSD (%)
    血清12.85.0105.62.8
    1087.03.4
    1597.22.3
    血清22.65.093.02.3
    1097.11.1
    1599.75.7
    血清33.15.0102.41.7
    1095.74.6
    1593.22.5
    下载: 导出CSV
  • [1] Kleinman W A, Richie J P. Status of glutathione and other thiols and disulfides in human plasma[J]. Biochemical pharmacology, 2000, 60(1): 19-29. doi: 10.1016/S0006-2952(00)00293-8
    [2] Areias M C C, Shimizu K, Compton R G. Voltammetric detection of glutathione: an adsorptive stripping voltammetry approach[J]. Analyst, 2016, 141(10): 2904-2910. doi: 10.1039/C6AN00550K
    [3] Erat M, Şakİroğlu H İ, Çİftçİ M. Effects of some antibiotics on glutathione reductase activities from human erythrocytes in vitro and from rat erythrocytes in vivo[J]. Journal of enzyme inhibition and medicinal chemistry, 2005, 20(1): 69-74. doi: 10.1080/14756360400009309
    [4] Perricone C, De Carolis C, Perricone R. Glutathione: a key player in autoimmunity[J]. Autoimmunity reviews, 2009, 8(8): 697-701. doi: 10.1016/j.autrev.2009.02.020
    [5] Ge J, Cai R, Chen X, et al. Facile approach to prepare HSA-templated MnO2 nanosheets as oxidase mimic for colorimetric detection of glutathione[J]. Talanta, 2019(195): 40-45.
    [6] Li Z M, Pi T, Sheng Y P, et al. Fluorescence detection of glutathione using N-doped graphene quantum dots–MnO2 nanoarchitecture[J]. Journal of Applied Spectroscopy, 2020, 87(5): 930-937. doi: 10.1007/s10812-020-01091-2
    [7] Bu Y, Zhu G, Li S, et al. Silver-nanoparticle-embedded porous silicon disks enabled SERS signal amplification for selective glutathione detection[J]. ACS Applied Nano Materials, 2018, 1(1): 410-417. doi: 10.1021/acsanm.7b00290
    [8] Rawat B, Mishra K K, Barman U, et al. Two-dimensional MoS2-based electrochemical biosensor for highly selective detection of glutathione[J]. IEEE Sensors Journal, 2020, 20(13): 6937-6944. doi: 10.1109/JSEN.2020.2978275
    [9] Ma L, Shi H, Lian K, et al. Highly selective and sensitive determination of several antioxidants in human breast milk using high-performance liquid chromatography based on Ag(III) complex chemiluminescence detection[J]. Food Chemistry, 2017(218): 422-426.
    [10] Lee S, Li J, Zhou X, et al. Recent progress on the development of glutathione (GSH) selective fluorescent and colorimetric probes[J]. Coordination Chemistry Reviews, 2018(366): 29-68.
    [11] Shi Y, Zhang H, Yue Z, et al. Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection[J]. Nanotechnology, 2013, 24(37): 375501. doi: 10.1088/0957-4484/24/37/375501
    [12] Dong Z Z, Lu L, Ko C N, et al. A MnO2 nanosheet-assisted GSH detection platform using an iridium (iii) complex as a switch-on luminescent probe[J]. Nanoscale, 2017, 9(14): 4677-4682. doi: 10.1039/C6NR08357A
    [13] Shi Y, Pan Y, Zhang H, et al. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma[J]. Biosensors and Bioelectronics, 2014(56): 39-45.
    [14] Zhang X, Wu F G, Liu P, et al. Enhanced fluorescence of gold nanoclusters composed of HAuCl4 and histidine by glutathione: glutathione detection and selective cancer cell imaging[J]. Small, 2014, 10(24): 5170-5177.
    [15] Yao C, Wang J, Zheng A, et al. A fluorescence sensing platform with the MnO2 nanosheets as an effective oxidant for glutathione detection[J]. Sensors and Actuators B: Chemical, 2017(252): 30-36.
    [16] He Y, Zhang X. Ultrasensitive colorimetric detection of manganese(II) ions based on anti-aggregation of unmodified silver nanoparticles[J]. Sensors and Actuators B: Chemical, 2016(222): 320-324.
    [17] Deng R, Xie X, Vendrell M, et al. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles[J]. Journal of the American Chemical Society, 2011, 133(50): 20168-20171. doi: 10.1021/ja2100774
    [18] Deng H H, Shi X Q, Wang F F, et al. Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host–guest recognition[J]. Chem. Mater., 2017, 29(3): 1362-1369. doi: 10.1021/acs.chemmater.6b05141
    [19] Jiao L, Zhang L, Du W, et al. Hierarchical manganese dioxide nanoflowers enable accurate ratiometric fluorescence enzyme-linked immunosorbent assay[J]. Nanoscale, 2018, 10(46): 21893-21897. doi: 10.1039/C8NR07096B
    [20] Fan D, Shang C, Gu W, et al. Introducing ratiometric fluorescence to MnO2 nanosheet-based biosensing: a simple, label-free ratiometric fluorescent sensor programmed by cascade logic circuit for ultrasensitive GSH detection[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 25870-25877.
    [21] 刘密凤, 刘蔚, 郭海, 等. 临床生物化学指标测量不确定度的评估[J]. 检验医学与临床, 2013, 10(23): 3153-3154.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  693
  • HTML全文浏览量:  493
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-05-28
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回