留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蜂蜜中氯霉素痕量残留测量质谱基质效应研究

田甜 刘书妤 张燕 周霞 焦慧 李秀琴

田甜,刘书妤,张燕,等. 蜂蜜中氯霉素痕量残留测量质谱基质效应研究[J]. 计量科学与技术,2021, 65(5): 77-82, 100 doi: 10.12338/j.issn.2096-9015.2020.9037
引用本文: 田甜,刘书妤,张燕,等. 蜂蜜中氯霉素痕量残留测量质谱基质效应研究[J]. 计量科学与技术,2021, 65(5): 77-82, 100 doi: 10.12338/j.issn.2096-9015.2020.9037
TIAN Tian, LIU Shuyu, ZHANG Yan, ZHOU Xia, JIAO Hui, LI Xiuqin. Mass Spectrometry Matrix Effect Study for the Trace Analysis of Chloramphenicol Residues in Honey[J]. Metrology Science and Technology, 2021, 65(5): 77-82, 100. doi: 10.12338/j.issn.2096-9015.2020.9037
Citation: TIAN Tian, LIU Shuyu, ZHANG Yan, ZHOU Xia, JIAO Hui, LI Xiuqin. Mass Spectrometry Matrix Effect Study for the Trace Analysis of Chloramphenicol Residues in Honey[J]. Metrology Science and Technology, 2021, 65(5): 77-82, 100. doi: 10.12338/j.issn.2096-9015.2020.9037

蜂蜜中氯霉素痕量残留测量质谱基质效应研究

doi: 10.12338/j.issn.2096-9015.2020.9037
基金项目: 中国计量科学研究院基本业务项目(AKY1924)
详细信息
    作者简介:

    田甜(1995-),上海工程技术大学硕士研究生,研究方向:材料化学工程,邮箱:ttian0601@outlook.com

    通讯作者:

    刘书妤(1978-),上海工程技术大学副教授,研究方向:新药开发研究,邮箱 liushuyu1219@163.com

    李秀琴(1979-),中国计量科学研究院研究员,研究方向:食品安全化学计量技术与标准物质研制,邮箱 lixq@nim.ac.cn

Mass Spectrometry Matrix Effect Study for the Trace Analysis of Chloramphenicol Residues in Honey

  • 摘要: 有机同位素稀释质谱法(Isotope dilution mass spectrometry,IDMS)是复杂基质样品中痕量成分准确测量的潜在基准方法,但分析条件、同位素稀释试剂、基质效应(Matrix Effect,ME))等因素也会对结果产生影响。本文以枣花和荆花蜂蜜为研究样品,比较不同提取方法下蜂蜜中氯霉素痕量残留测量时的基质效应,研究基质效应对结果的影响、基质效应的补偿及消除方法。采用基质效应柱后注射定性评价方法和萃取后添加定量评价方法,考察直接稀释提取法和乙酸乙酯提取法的基质效应及其对氯霉素测量结果准确性的影响;结果表明,直接稀释提取溶液中氯霉素受到的基质抑制效应更为显著,ME在7%~10%之间,抑制了90%以上的氯霉素质谱响应,外标法校准的提取回收率仅为10.9%±1.9%;乙酸乙酯法提取溶液的ME在33%~35%之间,基体抑制相对较弱,外标法校准的提取回收率为33.7%±1.2%。采用同位素稀释质谱法进行校准,两种提取方法的回收率分别为100.4%±4.3%、100.2%±3.4%,说明基质抑制效应对测量结果的影响被有效补偿。直接稀释提取法采用IDMS校准,可准确、快速测量蜂蜜中氯霉素痕量残留。
  • 图  1  基质效应定性评价方法流程图

    Figure  1.  Flow chart of matrix effect qualitative evaluation method

    图  2  不同方法提取液影响CAP质谱响应的总离子流

    注:a1.空白溶剂(15%甲醇水溶液);b1.乙酸乙酯法提取的空白蜂蜜提取溶液;c1.直接稀释法提取的空白蜂蜜溶液;d1. CAP 的LC-MS/MS谱图。

    Figure  2.  The total ion chromatogram of different solutions affecting the response of CAP mass spectrometry

    图  3  不同体积水淋洗液影响CAP质谱响应的总离子流

    注:a.空白溶剂(15%甲醇水溶液);b.20 ml水淋洗;c.10 ml水淋洗;d. 5 ml 水淋洗;e.CAP甲醇溶液 LC-MS/MS质谱图

    Figure  3.  The total ion chromatogram of the effect of different volume of water eluent on the response of CAP

    图  4  不同比例甲醇水淋洗液影响CAP质谱响应的离子流

    注:a.空白溶剂(15%甲醇水); b.50%甲醇水淋洗;c.25%甲醇水淋洗;d.5%甲醇水淋洗;e.CAP 甲醇溶液LC-MS/MS质谱图

    Figure  4.  The total ion chromatogram of the effect of different proportions of methanol-water on the response of CAP mass spectrometry

    图  5  两种前处理方法提取步骤及耗时情况 (n=100) (A) 直接稀释法(B)乙酸乙酯提取法

    Figure  5.  Extraction steps and time consuming of two pre-processing methods (n = 100) (A) Direct dilution method (B) Ethyl acetate extraction method

    表  1  LC-MS/MS检测离子对信息

    Table  1.   Transition reactions monitored by LC- MS/MS

    分析物保留时间/min母离子(m/z)子离子(m/z)碰撞电压/V
    CAP3.4321152*−17
    194−11
    257−10
    D5-CAP3.4326157*−17
    199−11
    262−10
    *定量离子
    下载: 导出CSV

    表  2  直接稀释法与乙酸乙酯提取法应用于不同蜂蜜基质中的MEθ值(n=3)

    Table  2.   ME and correction factor of direct dilution method and ethyl acetate extraction method applied to different honey(n =3)

    基质效应枣花蜂蜜荆花蜂蜜
    直接稀释法MEcap/%10.4 ± 0.77.6 ± 1.0
    MEd5-cap/%10.2 ± 0.97.6 ± 1.1
    θ1.03 ± 0.031.01 ± 0.04
    乙酸乙酯提取法MEcap/%35.2 ± 2.633.3 ± 4.0
    MEd5-cap/%36.3 ± 2.534.5 ± 3.8
    θ0.97 ± 0.020.97 ± 0.03
    下载: 导出CSV

    表  3  两种提取溶液不同净化条件的基质效应(n=6)

    Table  3.   Matrix effect optimized by two extraction methods (n = 6)

    优化条件直接稀释法乙酸乙酯提取法
    MEcap/%MEd5-cap/%MEcap/%MEd5-cap/%
    水体积/mL2011.2 ± 0.611.6 ± 0.811.8 ± 1.011.5 ± 0.7
    1012.4 ± 0.912.8 ± 1.112.2 ± 1.512.3 ± 1.5
    512.0 ± 1.012.0 ± 1.112.3 ± 1.012.2 ± 0.7
    甲醇比例/%5011.9 ± 0.712.3 ± 0.721.5 ± 2.221.1 ± 1.9
    256.5 ± 0.86.6 ± 0.813.2 ± 1.712.5 ± 1.9
    54.1 ± 0.74.5 ± 1.112.5 ± 0.912.1 ± 1.0
    下载: 导出CSV

    表  4  直接稀释法和乙酸乙酯提取法提取枣花蜂蜜中的CAP回收率%(n=6)

    Table  4.   Recovery% of CAP in jujube honey by direct dilution method and ethyl acetate extraction method (n = 6)

    浓度/μg·kg1直接稀释法乙酸乙酯提取法
    RE1RE2RE3RE4RE1RE2RE3RE4
    0.110.7 ± 2.499.1 ± 4.8101.8 ± 4.6100.1 ± 4.931.3 ± 1.069.8 ± 5.2101.1 ± 3.1103.8 ± 4.7
    0.411.3 ± 1.4103.1 ± 3.2102.2 ± 5.1100.7 ± 4.430.0 ± 1.875.8 ± 4.397.8 ± 3.399.9 ± 2.8
    2.010.8 ± 1.8100.1 ± 2.5100.6 ± 2.2100.5 ± 3.833.8 ± 0.887.0 ± 3.097.6 ± 4.496.8 ± 2.9
    平均回收率%10.9 ± 1.9100.8 ± 3.5101.3 ± 3.9100.4 ± 4.333.7 ± 1.277.6 ± 4.298.8 ± 3.6100.2 ± 3.4
    注:1.溶液外标校准法;2.基质匹配外标校准法;3. IDMS溶液校准法;4. IDMS基质匹配校准法
    下载: 导出CSV

    表  5  两种提取方法应用于不同实际蜂蜜样本中CAP的检测浓度μg·kg−1n=5)

    Table  5.   Detection concentration of CAP in different real honey samples by two extraction methods μg·kg−1 (n = 5)

    蜂蜜直接稀释法乙酸乙酯提取法
    荆花0.0861±0.00320.0841±0.0049
    枣花0.0233±0.00190.0277±0.0024
    枇杷0.0619±0.00150.0561±0.0021
    椴树1.05±0.071.07±0.02
    下载: 导出CSV
  • [1] Veach B, Mudalige T, Barens P, et al. Quantitative Screening Method for Erythromycin and Tylosin in Honey Using RapidFire Mass Spectrometry[J]. Journal of AOAC International, 2018, 101(3): 897-903. doi: 10.5740/jaoacint.17-0262
    [2] European Legislation Regarding Antibiotics in Honey: An Overview[EB/OL]. [2021-03-18]. http://europroxima.com.
    [3] QIN X F, WANG Q Q, GENG L P, et al. A “Signal-On” Photoelectrochemical Aptasensor Based on Graphene Quantum Dots-Sensitized TiO2 Nanotube Arrays for Sensitive Detection of Chloramphenicol[J]. Talanta, 2019, 197(1): 28-35.
    [4] 农业部峰产品质量监督检验测试中心. 绿色食品蜂产品: NY/T752-2012[S]. 北京. 中国标准出版社, 2012: 12.
    [5] Barreto F, Ribeiro C, Barcellos Hoff R, et al. Determination of Chloramphenicol, Thiamphenicol, Florfenicol and Florfenicol Amine in Poultry, Swine, Bovine and Fish by Liquid Chromatography-Tandem Mass Spectrometry[J]. Journal of Chromatography A, 2016, 1449: 48-53. doi: 10.1016/j.chroma.2016.04.024
    [6] Jakšić S, Ratajac R, Prica N, et al. Methods of Determination of Antibiotic Residues in Honey[J]. Journal of Analytical Chemistry, 2018, 73(4): 317-324. doi: 10.1134/S1061934818040044
    [7] Matuszewsk B, Constanzer M, Chavez-Eng C. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-MS/MS[J]. Analytical Chemistry, 2013, 75(13): 3019-3030.
    [8] Gómez-Pérez M, Plaza-Bolaños P, Romero-González R, et al. Comprehensive Qualitative and Quantitative Determination of Pesticides and Veterinary Drugs in Honey Using Liquid Chromatography-Orbitrap High Resolution Mass Spectrometry[J]. Journal of Chromatography A, 2012, 1248: 130-138. doi: 10.1016/j.chroma.2012.05.088
    [9] YAN C, ZHANG J, YAO L, et al. Aptamer-Mediated Colorimetric Method for Rapid and Sensitive Detection of Chloramphenicol in Food[J]. Food Chemistry, 2018, 260: 208-212. doi: 10.1016/j.foodchem.2018.04.014
    [10] LI Y G, LIU X H, ZHANG R, et al. Analysis of Chloramphenicol in Drinking Water Using an Evaporation Preparative Step and Isotope Dilution Liquid Ehromatography-Tandem Mass Spectrometry[J]. Acta Chromatographica, 2018, 30(1): 17-20. doi: 10.1556/1326.2017.28404
    [11] Galarini R, Saluti G, Giusepponi D, et al. Multiclass determination of 27 Antibiotics in Honey[J]. Food Control, 2015, 48: 12-24. doi: 10.1016/j.foodcont.2014.03.048
    [12] LI Z W, LEI C, WANG N, et al. Preparation of Magnetic Molecularly Imprinted Polymers with Double Functional Monomers for the Extraction and Detection of Chloramphenicol in Food[J]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1100-1101(9): 113-121.
    [13] Armenta S, de la Guardia M, Abad-Fuentes A, et al. Highly Selective Solid-Phase Extraction Sorbents for Chloramphenicol Determination in Food and Urine by Ion Mobility Spectrometry[J]. Analytical and Bioanalytical Chemistry, 2016, 408(29): 8559-8567. doi: 10.1007/s00216-016-9995-9
    [14] Sniegocki T, Posyniak A, Gbylik-Sikorska M, et al. Determination of Chloramphenicol in Milk Using a QuEChERS-Based on Liquid Chromatography Tandem Mass Spectrometry Method[J]. Analytical Letters, 2014, 474(4): 568-578.
    [15] Rezaee M, Khalilian F. Application of Ultrasound-Assisted Extraction Followed by Solid-Phase Extraction Followed by Dispersive Liquid-Liquid Microextraction for the Determination of Chloramphenicol in Chicken Meat[J]. Food Analytical Methods, 2018, 11(3): 759-767. doi: 10.1007/s12161-017-1048-2
    [16] Baeza Fonte A, Rodríguez Castro G, Liva-Garrido M. Multi-Residue Analysis of Sulfonamide Antibiotics in Honey Samples by On-line Solid Phase Extraction Using Molecularly Imprinted Polymers Coupled to Liquid Chromatography-Tandem Mass Spectrometry[J]. Journal of Liquid Chromatography and Related Technologies, 2018, 41(15-16): 881-891. doi: 10.1080/10826076.2018.1533477
    [17] Kawano S, HAO HongYuan, Hashi Y, et al. Analysis of Chloramphenicol in Honey by On-line Pretreatment Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese Chemical Letters, 2015, 26(1): 36-38. doi: 10.1016/j.cclet.2014.10.026
    [18] Shao B, Jia X, Zhang J, et al. Multi-residual analysis of 16 β-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry[J]. Food Chem, 2009, 114(11): 15-21.
    [19] Berg T, Karlsen M, Øiestad Å M L, et al. Evaluation of 13C- and 2H-labeled internal standards for the determination of amphetamines in biological samples, by reversed-phase ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2014, 1344: 83-90. doi: 10.1016/j.chroma.2014.04.020
    [20] Berg T, Strand D H. 13C labelled internal standards-A solution to minimize ion suppression effects in liquid chromatography-tandem mass spectrometry analyses of drugs in biological samples[J]. Journal of Chromatography A, 2011, 1218(52): 9366-9374. doi: 10.1016/j.chroma.2011.10.081
    [21] Cappiello A, Famiglini G, Palma P, et al. Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry[J]. Analytical Chemistry, 2008, 80(23): 9343-9348. doi: 10.1021/ac8018312
    [22] Bienvenu J, Provencher G, Bélanger P, et al. Standardized Procedure for the Simultaneous Determination of the Matrix Effect, Recovery, Process Efficiency, and Internal Standard Association[J]. Analytical Chemistry, 2017, 89(14): 7560-7568. doi: 10.1021/acs.analchem.7b01383
    [23] LI X Q, LI H M, XU S, et al. Rapid Quantification of Trace Chloramphenicol in Honey Under Ambient Conditions Using Direct Analysis Via Real-Time QTRAP Mass Spectrometry[J]. Food Chemistry, 2019, 276: 50-56. doi: 10.1016/j.foodchem.2018.09.130
    [24] LI X Q, YANG Z, ZHANG Q H, et al. Evaluation of Matrix Effect in Isotope Dilution Mass Spectrometry Dased on Quantitative Analysis of Chloramphenicol Residues in Milk Powder[J]. Analytica Chimica Acta, 2014, 807: 75-83. doi: 10.1016/j.aca.2013.11.017
    [25] Sargent M, Harte R, Harrington C. Guidelines for Achieving High Accuracy in Isotope Dilution Mass Spectrometry (IDMS)[M]. Laboratory of the Government Chemist by The Royal Society of Chemistry, 2002.
    [26] Mottier P, Parisod V, Gremaud E, et al. Determination of the Antibiotic Chloramphenicol in Meat and Seafood Products by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry[J]. Journal of Chromatography A, 2003, 994(1-2): 75-84. doi: 10.1016/S0021-9673(03)00484-9
    [27] Lopez M, Pettis J, Smith I, et al. Multiclass Determination and Confirmation of Antibiotic Residues in Honey Using LC-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2008, 56(5): 1553-1559. doi: 10.1021/jf073236w
    [28] Pagliano E, Meija J. Reducing the Matrix Effects in Chemical Analysis: Fusion of Isotope Dilution and Standard Addition Methods[J]. Metrologia, 2016, 53(2): 829-834. doi: 10.1088/0026-1394/53/2/829
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  211
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-05-08
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回