留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短路试验电流光纤测量技术研究

李传生 赵叶铭 林飞鹏 梁波 王家福 赵伟 邵海明

李传生,赵叶铭,林飞鹏,等. 短路试验电流光纤测量技术研究[J]. 计量科学与技术,2021, 65(5): 3-7 doi: 10.12338/j.issn.2096-9015.2020.9054
引用本文: 李传生,赵叶铭,林飞鹏,等. 短路试验电流光纤测量技术研究[J]. 计量科学与技术,2021, 65(5): 3-7 doi: 10.12338/j.issn.2096-9015.2020.9054
LI Chuansheng, ZHAO Yeming, LIN Feipeng, LIANG Bo, WANG Jiafu, ZHAO Wei, SHAO Haiming. Research on Fiber-Optic Sensing Technology of Short-Circuit Test Current[J]. Metrology Science and Technology, 2021, 65(5): 3-7. doi: 10.12338/j.issn.2096-9015.2020.9054
Citation: LI Chuansheng, ZHAO Yeming, LIN Feipeng, LIANG Bo, WANG Jiafu, ZHAO Wei, SHAO Haiming. Research on Fiber-Optic Sensing Technology of Short-Circuit Test Current[J]. Metrology Science and Technology, 2021, 65(5): 3-7. doi: 10.12338/j.issn.2096-9015.2020.9054

短路试验电流光纤测量技术研究

doi: 10.12338/j.issn.2096-9015.2020.9054
基金项目: 国家重点研发计划资助项目(2016YFF0102401、2016YFF0102404)
详细信息
    作者简介:

    李传生(1984-),中国计量科学研究院副研究员,研究方向:光纤电流传感技术、宽带大电流计量技术,邮箱:lichsh@nim.ac.cn

    通讯作者:

    邵海明(1965-),中国计量科学研究院所长、研究员,研究方向:高电压和大电流计量技术,邮箱:shaohm@nim.ac.cn

Research on Fiber-Optic Sensing Technology of Short-Circuit Test Current

  • 摘要: 针对交、直流开关电器短路试验电流校准问题,提出光纤短路电流测量方法。建立了光纤电流传感器低频动态模型,通过时域、频域特性仿真确定了闭环检测系统的参数,并计算了传感器对直流和工频短路电流的响应,结果表明传感器的动态性能能够满足跟踪被测短路电流的要求。搭建了光纤电流传感器校准装置,校准结果表明:在直流5~300 kA、工频5~50 kA范围内,传感器样机的测量准确度优于0.2%。利用光纤电流传感器进行短路电流实验测试,并与目前普遍使用的分流器和罗氏线圈比较,结果表明:对于6~100 kA的直流短路电流,分流器与光纤电流传感器之间的相对误差小于0.3%;对于10~130 kA的工频短路电流,罗氏线圈与光纤电流传感器之间的相对误差不超过0.2%。研究工作为短路试验电流的测量提供了新的解决途径。
  • 图  1  光纤电流传感器原理示意图

    Figure  1.  Configuration of fiber-optic current sensor

    图  2  动态模型框图

    Figure  2.  Diagram of dynamic model

    图  3  时域、频域响应特性

    Figure  3.  Time-domain and frequency-domain response characteristics

    图  4  短路电流响应计算结果

    Figure  4.  Simulation results for short-circuit current response

    图  5  光纤电流传感器校准原理

    Figure  5.  Calibration principle of fiber-optic current sensor

    图  6  光纤电流传感器校准结果

    Figure  6.  Calibration results for fiber-optic current sensor

    图  7  短路试验电流测量结果

    Figure  7.  Short-circuit test current measurement results

    表  1  直流短路电流测量结果

    Table  1.   Test results for DC short-circuit current

    光纤电流传感器/kA分流器/kA相对误差/%
    5.8525.847−0.08
    10.0810.100.20
    15.0915.110.13
    19.5719.600.15
    38.4238.35−0.18
    44.8244.820.00
    60.1260.230.18
    79.5579.710.20
    106.8107.10.28
    下载: 导出CSV

    表  2  工频短路电流测量结果

    Table  2.   Test results for AC short-circuit current

    光纤电流传感器/kA罗氏线圈/kA相对误差/%
    10.2210.21−0.10
    20.0520.080.15
    30.4530.510.20
    40.9540.950.00
    51.7851.780.00
    63.3263.370.08
    82.0882.130.06
    110.1110.10.00
    131.8131.6−0.15
    下载: 导出CSV
  • [1] 班建, 高享想, 黄实, 等. 直流断路器电流开断试验技术与试验回路[J]. 高压电器, 2017, 53(6): 167-172.
    [2] 高享想, 纪祥贞, 马健, 等. 大容量发电机断路器短路试验程序分析与讨论[J]. 高压电器, 2017, 53(2): 172-177.
    [3] 张秀青, 傅鹏, 高格, 等. ITER直流隔离开关短路试验研究[J]. 强激光与粒子束, 2017, 29(2): 025003-1-025003-5.
    [4] 王卫东, 邢文奇, 孙珂珂. 直流断路器用快速机械开关的试验研究[J]. 电工电气, 2018(9): 46-51.
    [5] 邓晓峰, 屈建宇, 侯国斌, 等. 万能式断路器短时耐受性能研究综述[J]. 电器与能效管理技术, 2017(12): 1-7.
    [6] 冯璟, 季慧玉. 提高断路器短时耐受电流性能的研究和分析[J]. 低压电器, 2011(10): 1-5.
    [7] 蔡梦怡, 杨为, 贾转转, 等. 基于半波法的非对称短路试验电流交直流分量特征参数计算方法研究[J]. 电器与能效管理技术, 2019(11): 52-56.
    [8] 国家市场监督管理总局. 低压断路器动作特性试验台校准规范: JJF 1799-2020[S]. 北京: 中国质检出版社, 2020.
    [9] 王安, 姚斯立, 阎对丰, 等. 新一代的大容量试验测量系统[J]. 高压电器, 2012, 48(6): 38-43.
    [10] 李传生, 李奇, 林飞鹏, 等. 光纤超大电流在线校准技术[J]. 计量技术, 2020(6): 51-54.
    [11] 张朝阳, 张春熹, 王夏霄, 等. 数字闭环全光纤电流互感器信号处理方法[J]. 中国电机工程学报, 2009, 29(30): 42-46.
    [12] 王巍, 吴维宁, 王雪峰. 调制器调制系数对光纤电流互感器测量精度的影响[J]. 电力系统自动化, 2012, 36(24): 64-68.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  446
  • HTML全文浏览量:  213
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-05-08
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回