Research on Influencing Factors of Evaporation Loss Measurement and Evaluation of Uncertainty
-
摘要: 蒸发损失是表征油品品质的重要指标,我国现行行业标准NB/SH/T 0059-2010《润滑油蒸发损失测定法(诺亚克法)》中的非伍德合金诺亚克B法具有无毒害、能够模拟发动机的实际工况、测试结果准确等优点,在行业中应用广泛。研究了诺亚克B法测量过程中加样量、加热温度、加热时间和真空泵压差等因素对实验结果的影响以及引入的不确定度。研究结果表明,加样量在(65±0.1)g变化时,测试结果变化为±0.019%;加热温度在245.2℃±0.5 ℃的波动可能引起的测试结果变化不超过±0.27%;每5 s的加热时间变化可能引起测试结果的变化小于0.02%;真空泵压差在(20±0.2)mmH2O压力波动引起的测量结果变化为 ±0.04%。由加样量、加热温度、加热时长以及真空泵压差引入的不确定度分别为0.011%、0.16%、0.01%和0.02%,各影响因素引入的扩展不确定度为0.32%(k=2)。Abstract: Evaporation loss is an important indicator to characterize oil quality. The Noack B method for non-wood alloy in The current industry standard NB/SH/T0059-2010 "Standard test method for evaporation loss of lubricating oils by the Noack method" has the advantages of being non-toxic, able to simulate the actual working conditions of engines and accurate test results, and is widely used in the industry. This paper studied the influence of different factors including sample addition amount, heating temperature, heating time, and pressure difference of vacuum pump on the experimental results and the uncertainties introduced in the process of Noack B method measurement. The research results show that when the sample amount is changed at (65±0.1) g, the test result change is ±0.019%. The fluctuation of the heating temperature at 245.2℃±0.5℃ may cause the test result change not more than ±0.27%. The variation of heating time per 5 s may cause less than 0.02% of the test results. The variation of measurement results caused by the pressure fluctuation of vacuum pump pressure at (20 ± 0.2) mmH2O is ±0.04%. The uncertainties introduced by the sample addition amount, heating temperature, heating time, and vacuum pump pressure difference are 0.011%, 0.16%, 0.01%, and 0.02%, respectively, and the expanded uncertainty introduced by each influencing factor is 0.32% (k=2).
-
Key words:
- evaporation loss /
- Noack B method /
- lubricating oil /
- influencing factors /
- uncertainty
-
表 1 实验影响因素引入的不确定度
Table 1. Uncertainties introduced by experimental influencing factors
影响
因素分量描述 统计
方法标准不
确定度加样量 加样量在±0.1g变化时,测
试结果的变化为±0.019%B类 0.011% 加热温度 ±0.5℃温度波动可能引起的蒸
发损失测试结果变化不超过±0.27%B类 0.16% 加热时长 每5s的时间变化可能引起测
试结果的变化小于0.02%B类 0.01% 真空泵压差 0.2mm压力波动引起的测量
结果变化±0.04%B类 0.02% 合成标准不确定度 0.16% -
[1] 杨道胜. 世界润滑油基础油的进展[J]. 润滑油, 2003, 18(3): 6-8. doi: 10.3969/j.issn.1002-3119.2003.03.002 [2] 王俊涛, 刘冬晓, 刘岩, 等. 可变粘度润滑油微小流量标准装置设计探讨[J]. 计量技术, 2019(11): 20-23. [3] 贺孝愚, 童孙禹, 宛昕, 等. 活化热氛围下润滑油自燃特性研究[J]. 润滑油, 2016, 31(1): 59-64. doi: 10.3969/j.issn.1002-3119.2016.01.012 [4] 丘晖饶, 庞晋山. 电位滴定法测定润滑油酸值不确定度评估[J]. 计量学报, 2019, 40(5): 937-940. doi: 10.3969/j.issn.1000-1158.2019.05.33 [5] 孙瑞华, 吴长彧. 国Ⅲ摩托车专用油的开发及应用[J]. 润滑油, 2013, 28(2): 22-27. doi: 10.3969/j.issn.1002-3119.2013.02.004 [6] 侯善华, 姜晓辉. 气相色谱法测定润滑油的蒸发损失[J]. 广州化工, 2018, 46(3): 112-113. doi: 10.3969/j.issn.1001-9677.2018.03.039 [7] 王志轩, 徐强, 杜咏梅, 等. 一种燃料热沉标准物质候选物的纯度定值及不确定度分析[J]. 计量学报, 2021, 42(6): 815-821. doi: 10.3969/j.issn.1000-1158.2021.06.20 [8] 陆沁莹, 李桂华. 热重诺亚克法——一种新型的润滑油蒸发损失测定方法[J]. 润滑油, 2004, 19(2): 47-49. doi: 10.3969/j.issn.1002-3119.2004.02.012 [9] 张春熙, 杨善杰, 凌辉, 等. 润滑油蒸发损失的环保型测试方法相关性分析[J]. 广东化工, 2014, 41(16): 58-59. doi: 10.3969/j.issn.1007-1865.2014.16.033 [10] 国家能源局. 润滑油蒸发损失的测定 诺亚克法: NB/SH/T 0059-2010 [S]. 北京: 中国石化出版社, 2011. [11] 解增忠, 叶蔚甄, 赵毅, 等. 影响烷基芳烃蒸发损失的结构因素探索[J]. 石油炼制与化工, 2019, 50(10): 8-12. doi: 10.3969/j.issn.1005-2399.2019.10.003 [12] 郎需进, 潘晓霞, 张大华, 等. 大气压对润滑油蒸发损失的影响分析[J]. 润滑油, 2015, 30(3): 39-41. doi: 10.3969/j.issn.1002-3119.2015.03.010 [13] 于淑清, 王娟. 润滑油蒸发损失方法的相关性考察[J]. 润滑油, 1996, 11(3): 57-58. [14] 王鲁强. 润滑油基础油蒸发损失的影响因素研究[J]. 石油炼制与化工, 2022, 53(2): 93-98. doi: 10.3969/j.issn.1005-2399.2022.02.015 [15] 李建新, 孙翔兰, 王栋. 诺亚克蒸发损失的非伍德合金和伍德合金法的相关性验证[J]. 润滑油, 2012, 27(4): 31-34. doi: 10.3969/j.issn.1002-3119.2012.04.009 [16] 关宇. 诺亚克法润滑油蒸发损失的测定影响因素分析[J]. 黑龙江科技信息, 2015(12): 41. [17] 靳浩元, 刘军. 测量不确定度的评定方法及应用研究[J]. 计量科学与技术, 2021, 65(5): 124-131. doi: 10.12338/j.issn.2096-9015.2020.9002 [18] Sripattrapan W, Wongwises S. Two-phase flow of refrigerants during evaporation under constant heat flux in a horizontal tube[J]. International Communications in Heat and Mass Transfer, 2005, 32(3-4): 386-402. doi: 10.1016/j.icheatmasstransfer.2004.05.013 [19] Ping Y, Long W, Feng L, et al. An experimental and numerical study of the evaporation and pyrolysis characteristics of lubricating oil droplets in the natural gas engine conditions[J]. International Journal of Heat and Mass Transfer, 2016, 103(12): 646-660.