留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝铜固定点黑体的温度值取值方法的研究

张婷婷 卢小丰 董亮 王皓

张婷婷,卢小丰,董亮,等. 铝铜固定点黑体的温度值取值方法的研究[J]. 计量科学与技术,2022, 66(7): 28-32, 69 doi: 10.12338/j.issn.2096-9015.2021.0581
引用本文: 张婷婷,卢小丰,董亮,等. 铝铜固定点黑体的温度值取值方法的研究[J]. 计量科学与技术,2022, 66(7): 28-32, 69 doi: 10.12338/j.issn.2096-9015.2021.0581
ZHANG Tingting, LU Xiaofeng, DONG Liang, WANG Hao. Study on the Method of Determining the Temperature Value of the Al-Cu Fixed Point Blackbody[J]. Metrology Science and Technology, 2022, 66(7): 28-32, 69. doi: 10.12338/j.issn.2096-9015.2021.0581
Citation: ZHANG Tingting, LU Xiaofeng, DONG Liang, WANG Hao. Study on the Method of Determining the Temperature Value of the Al-Cu Fixed Point Blackbody[J]. Metrology Science and Technology, 2022, 66(7): 28-32, 69. doi: 10.12338/j.issn.2096-9015.2021.0581

铝铜固定点黑体的温度值取值方法的研究

doi: 10.12338/j.issn.2096-9015.2021.0581
基金项目: 国家重点研发计划项目(2018YFB2003104)。
详细信息
    作者简介:

    张婷婷(1994-),中国计量科学研究院助理研究员,研究方向:辐射测温,邮箱:2606254489@qq.com

    通讯作者:

    卢小丰(1979-),中国计量科学研究院副研究员,研究方向:辐射测温,邮箱:luxf@nim.ac.cn

Study on the Method of Determining the Temperature Value of the Al-Cu Fixed Point Blackbody

  • 摘要: 针对90国际温标(ITS90)中锌固定点(419.53℃)与铝固定点(660.32℃)之间温度间隔过大的问题,研制了Al-Cu固定点(Cu 33wt%,548.16℃)作为辅助固定点。通过自主研发的辐射温度计RT9032来测试Al-Cu固定点的熔化和凝固温度值。对于Al-Cu固定点温度值的选取采取熔化平台的平均值、拐点(Point of Inflection,POI)、上限温度点(Upper Limit,UL)三种方式。研究结果表明:不同的选取方式对于熔化温度并没有产生明显的差异,最大相差34mK,且Al-Cu固定点的重复性均在18mK以内,因此,Al-Cu固定点(熔点)可以作为ITS-90固定点以外的辅助固定点使用。
  • 图  1  坩埚的结构示意图

    Figure  1.  Schematic diagram of the structure of the crucible

    图  2  漏斗的结构示意图

    Figure  2.  Schematic diagram of the structure of the funnel

    图  3  内部材料布局图

    Figure  3.  Layout diagram of internal materials

    图  4  Al-Cu-0119的熔化曲线

    注:1、2、3和4分别为第一次测量、第二次测量、第三次测量和第四次测量

    Figure  4.  Melting curve of Al-Cu-0119

    图  5  Al-Cu-0219的熔化曲线

    注:1、2、3和4分别为第一次测量、第二次测量、第三次测量和第四次测量

    Figure  5.  Melting curve of Al-Cu-0219

    图  6  Al-Cu-0319的熔化曲线

    注:1和2分别为第一次测量、第二次测量

    Figure  6.  Melting curve of Al-Cu-0319

    图  7  Al-Cu-0219的熔化坪台

    Figure  7.  Melting plateau of Al-Cu-0219

    图  8  Al-Cu-0219的熔化坪台(黑色实线)、一阶导数 (红色实线)及三次方拟合曲线(蓝色划线)

    Figure  8.  Al-Cu-0219 melting plateau (black solid line), first derivative (red solid line) and cubic fitting curve (blue underline)

    图  9  Al-Cu-0219的熔化坪台(黑色实线)、POI处的切线(蓝色划线)以及外推线(棕色实线)

    Figure  9.  The melting plateau of Al-Cu-0219 (black solid line), the tangent line at the POI (blue underline) and the extrapolation line (brown solid line)

    图  10  不同取值方法获得的熔化值以及误差

    Figure  10.  Melting value and error obtained by different value determination methods

  • [1] PRESTON-THOMAS H. The International Temperature Scale of 1990[J]. Metrologia, 1990, 27: 3-10. doi: 10.1088/0026-1394/27/1/002
    [2] BOGUHN D, AUGUSTIN S, BERNHARD F, et al. Application of Binary Alloys in Miniature Fixed-Point Cells as Secondary Fixed Points in the Temperature Range from 500 °C to 660 °C[J]. American Institute of Physics, 2003, 684: 249-254.
    [3] ANCSIN J. Al-Cu eutectic: An experimental study of its melting properties[J]. Metrologia, 2007, 44: 87-90. doi: 10.1088/0026-1394/44/1/013
    [4] ANCSIN J. Manipulating the Melting behavior of Metal-Metal Eutectics[J]. International Journal of Thermophysics, 2008, 29: 181-189. doi: 10.1007/s10765-007-0307-7
    [5] AUGUSTIN S, BERNHARD F, BOGUHN D, et al. Industrially applicable fixed-point thermocouples [J]. TEMPMEKO, 2001, 2003: 3-8.
    [6] WOOLLIAMS E R, ANHALT K, BALLICO M, et al. Thermodynamic temperature assignment to the point of inflection of the melting curve of high-temperature fixed points[J]. Philosophical Tansactions of The Royal Society A, 2016, 374(2064): 20150044.
    [7] SUN J P, LU X F, YE M, et al. Stability Evaluation and Calibration of Type C Thermocouples at the Pt-C Eutectic Fixed Point[J]. International Journal of Thermophysics, 2017, 38(12): 174. doi: 10.1007/s10765-017-2315-6
    [8] SUN J P, PAN J, LU X F, et al. Miniature fixed point cells for self-calibration of type C high temperature thermocouples[J]. Measurement Science and Technology, 2019, 31(1): 014004.
    [9] 刁福广, 蔡晋辉, 孙建平, 等. Ga-In-Sn微型共晶点相变特性研究[J]. 计量学报, 2019, 40(3): 421-426. doi: 10.3969/j.issn.1000-1158.2019.03.12
    [10] 金森林, 李硕, 姚雅萱, 等. 薄膜材料相变温度测量方法介绍[J]. 计量科学与技术, 2021(1): 8-13,3.
    [11] LEE S J, NAKAMURA H, KAWAHITO Y, et al. Effect of welding speed on microstructural and mechanical properties of laser lap weld joints in dissimilar Al and Cu sheets[J]. Science and Technology of Welding and Joining, 2014, 19(2): 111-118. doi: 10.1179/1362171813Y.0000000168
    [12] XIA C, LI Y, PUCHKOV U A, et al. Microstructure and phase constitution near the interface of Cu/Al vacuum brazing using Al-Si filler metal[J]. Vacuum, 2008, 82(8): 799-804. doi: 10.1016/j.vacuum.2007.11.007
    [13] 刘晓英, 刘巨芬, 王景辉, 等. 0.9μm光电高温计应用单固定点延伸和多固定点内插的分度方法比较[J]. 计量学报, 2021, 42(8): 1000-1005. doi: 10.3969/j.issn.1000-1158.2021.08.04
    [14] ANCSIN J. Non-uniqueness of ITS-90 at 548.2 °C and at 156.6 °C[J]. Metrologia, 2006, 43(5): 461-469. doi: 10.1088/0026-1394/43/5/018
    [15] LOWE D, HEUFELDER S. Effect of solid liquid interface velocity on the measured upper and lower limits of the liquidus temperature of cobalt-carbon eutectic fixed points[J]. Metrologia, 2013, 50(3): 227-234. doi: 10.1088/0026-1394/50/3/227
    [16] BLOEMBERGEN P, YAMADA Y, SASAJIMA N, et al. The effect of the eutectic structure and the residual effect of impurities on the uncertainty in the eutectic temperatures of Fe–C and Co–C[J]. Metrologia, 2007, 44(5): 279. doi: 10.1088/0026-1394/44/5/004
    [17] 卢小丰, 张婷婷, 董伟, 等. Pd-C和Ru-C固定点的热力学和ITS-90温度测量[J]. 计量科学与技术, 2021, 65(5): 50-54. doi: 10.12338/j.issn.2096-9015.2020.9034
  • 加载中
图(10)
计量
  • 文章访问数:  659
  • HTML全文浏览量:  245
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 录用日期:  2022-03-23
  • 网络出版日期:  2022-04-04

目录

    /

    返回文章
    返回