留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水环境中砷和锑检测方法的研究进展

于亚琴 周振 杜彪 卢小新 张正东

于亚琴,周振,杜彪,等. 水环境中砷和锑检测方法的研究进展[J]. 计量科学与技术,2022, 66(6): 19-25, 59 doi: 10.12338/j.issn.2096-9015.2021.0591
引用本文: 于亚琴,周振,杜彪,等. 水环境中砷和锑检测方法的研究进展[J]. 计量科学与技术,2022, 66(6): 19-25, 59 doi: 10.12338/j.issn.2096-9015.2021.0591
YU Yaqin, ZHOU Zhen, DU Biao, LU Xiaoxin, ZHANG Zhengdong. Research Progress of Arsenic and Antimony Detection Methods in Water Environment[J]. Metrology Science and Technology, 2022, 66(6): 19-25, 59. doi: 10.12338/j.issn.2096-9015.2021.0591
Citation: YU Yaqin, ZHOU Zhen, DU Biao, LU Xiaoxin, ZHANG Zhengdong. Research Progress of Arsenic and Antimony Detection Methods in Water Environment[J]. Metrology Science and Technology, 2022, 66(6): 19-25, 59. doi: 10.12338/j.issn.2096-9015.2021.0591

水环境中砷和锑检测方法的研究进展

doi: 10.12338/j.issn.2096-9015.2021.0591
基金项目: 国家市场监督管理总局科技计划项目(2021MK153);中国计量科学研究院博士后项目(BH2107);中国计量科学研究院基本科研业务费项目(AKYZZ2234)。
详细信息
    作者简介:

    于亚琴(1990-),中国计量科学研究院助理研究员,研究方向:环境分析化学,邮箱:yuyq@nim.ac.cn

    通讯作者:

    张正东(1976-),中国计量科学研究院副研究员,研究方向:分析化学,邮箱:zhangzhengdong@nim.ac.cn

Research Progress of Arsenic and Antimony Detection Methods in Water Environment

  • 摘要: 砷和锑是典型阴离子型污染物,随着砷锑矿产资源开发,以及含砷锑农药和添加剂的滥用,环境中砷和锑污染事件时有发生。环境介质中砷和锑形态分析技术的发展,对砷和锑污染环境监管和污染防治具有重要意义。对现有砷和锑的形态分析技术进行了综述,特别关注目前现场形态分析技术的发展,并指出环境样品中砷和锑赋存形态分析、在线监测开发的重要发展方向。
  • 图  1  含氧阴离子砷和锑(三价和五价)的分子结构示意图

    Figure  1.  Schematic diagram of molecular structures of the oxygen-containing anions arsenic and antimony (trivalent and pentavalent)

    图  2  Visual MINTEQ 3.1模拟不同pH下砷和锑赋存形态的理论分布图[12]

    Figure  2.  Visual MINTEQ 3.1 simulated theoretical distribution of arsenic and antimony species at different pH

    图  3  高砷地区在世界范围的分布[14]

    Figure  3.  Location of high arsenic areas in the world[14]

    图  4  二氧化硅纳米颗粒[24]和基于量子点[25]的荧光传感器分析三价砷

    Figure  4.  Silicon dioxide nanoparticles [24]and quantum dot-based[25] fluorescent sensors for the analysis of trivalent arsenic

    图  5  基于阳离子盐诱导AuNPs聚集的传感器检测水溶液中As(III)[28]

    Figure  5.  Sensor based on cationic salt-induced aggregation of AuNPs for detection of As(III) in aqueous solution[28]

    图  6  Au@Ag[31]、Fe3O4@Ag[32]核壳结构纳米颗粒对As(III)的SERS检测以及 I3-Ag-VBB对Sb(III)的SERS检测[36]

    Figure  6.  SERS detection of As(III) based on Au@Ag[31] and Fe3O4@Ag[32] core–shell nanoparticles, and SERS detection of Sb(III) based on I3-Ag-VBB[36]

    图  7  3D还原氧化石墨烯修饰AuNPs传感器[37]、双金属电极[38], 钌修饰玻碳电极[39]用于检测As(III)以及核壳结构AuFe@FeOx-CFC柔性电极材料[22]测定Sb(III)

    Figure  7.  Sensors based on 3D-reduced graphene oxide modified AuNPs[37], bimetallic electrode[38], ruthenium modified glass carbon electrode for As(III) determination[39], and core-shell AuFe@FeOx-CFC flexible electrode for Sb(III) determination[22]

  • [1] M HE, X WANG, F WU, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421: 41-50.
    [2] C LIN, Y WU, W LU, et al. Water chemistry and ecotoxicity of an acid mine drainage-affected stream in subtropical China during a major flood event[J]. Journal of Hazardous Materials, 2007, 142(1-2): 199-207. doi: 10.1016/j.jhazmat.2006.08.006
    [3] M FILELLA, N BELZILE, Y W CHEN. Antimony in the environment: a review focused on natural waters I. Occurrence[J]. Earth Science Reviews, 2002, 57(1-2): 125-176. doi: 10.1016/S0012-8252(01)00070-8
    [4] D K NORDSTROM. Public health-worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296(5576): 2143-2145. doi: 10.1126/science.1072375
    [5] F X X HAN, Y SU, D L MONTS, et al. Assessment of global industrial-age anthropogenic arsenic contamination[J]. Naturwissenschaften, 2003, 90(9): 395-401. doi: 10.1007/s00114-003-0451-2
    [6] A H SMITH, E O LINGAS, M RAHMAN. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency[J]. Bulletin of the World Health Organization, 2000, 78(9): 1093-1103.
    [7] J CUI, J SHI, G JIANG, et al. Arsenic Levels and Speciation from Ingestion Exposures to Biomarkers in Shanxi, China: Implications for Human Health[J]. Environ. Sci. Technol., 2013, 47(10): 5419-5424. doi: 10.1021/es400129s
    [8] M HE. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China[J]. Environmental Geochemistry and Health, 2007, 29(3): 209-219. doi: 10.1007/s10653-006-9066-9
    [9] 张再平, 王玉. 电感耦合等离子体质谱法测定大米粉中砷、镉含量及不确定度评估[J]. 计量科学与技术, 2021, 65(12): 60-65. doi: 10.12338/j.issn.2096-9015.2019.0427
    [10] L YAN, J SONG, T CHAN, et al. Insights into antimony adsorption on {001} TiO2: XAFS and DFT study[J]. Environmental Science & Technology, 2017, 51(11): 6335-6341.
    [11] Z ZHOU, Y YU, Z DING, et al. Competitive adsorption of arsenic and fluoride on {201} TiO2[J]. Appl. Surf. Sci., 2019(466): 425-432.
    [12] 秦婷, 苏庆, 邹琴. 微波消解ICP-MS法测定化妆品中镉的不确定度评定[J]. 计量技术, 2019(2): 14-17.
    [13] U K CHOWDHURY, B K BISWAS, T R CHOWDHURY, et al. Groundwater arsenic contamination in Bangladesh and West Bengal, India[J]. Environmental Health Perspectives, 2000, 108(5): 393-397. doi: 10.1289/ehp.00108393
    [14] J PODGORSKI, M BERG. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-847. doi: 10.1126/science.aba1510
    [15] L RODRIGUEZ LADO, G F SUN, M BERG, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868. doi: 10.1126/science.1237484
    [16] F LIU, X C LE, A MCKNIGHT WHITFORD, et al. Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China[J]. Environmental Geochemistry and Health, 2010, 32(5): 401-413. doi: 10.1007/s10653-010-9284-z
    [17] Renehan A, Gleave E N, Mcgurk M. Minimization of phosphate interference in the direct determination of arsenic in urine by electrothermal atomic absorption spectrometry[J]. Analytica Chimica Acta, 1996, 334(1): 177-182.
    [18] J HOVORKA, G B MARSHALL. Determination of As, Cd, and Pb in epicuticular waxes of pine and spruce needles by ETAAS[J]. Fresenius' Journal of Analytical Chemistry, 1997, 358(5): 635-640. doi: 10.1007/s002160050482
    [19] Yang L L, Zhang D Q. In situ preconcentration and determination of trace arsenic in botanical samples by hydride generation-graphite furnace atomic absorption spectrometry with Pd–Zr as chemical modifier[J]. Analytica Chimica Acta, 2003, 491(1): 91-97. doi: 10.1016/S0003-2670(03)00798-0
    [20] W T CORNS, P B STOCKWELL, L EBDON, et al. Development of an atomic fluorescence spectrometer for the hydride-forming elements[J]. Journal of Analytical Atomic Spectrometry, 1993, 8(1): 71-77. doi: 10.1039/ja9930800071
    [21] L F DIAS, T D SAINT'PIERRE, S M MAIA, et al. Determination of arsenic, lead, selenium and tin in sediments by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry using Ru as permanent modifier and NaCl as a carrier[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2002, 57(12): 2003-2015. doi: 10.1016/S0584-8547(02)00210-0
    [22] Y YU, J DU, T CHAN, et al. Core@shell AuFe@FeOx -CFC as electrochemical sensor for trace antimony analysis[J]. Sensors and Actuators B-Chemical, 2020, 319: 128322. doi: 10.1016/j.snb.2020.128322
    [23] J DAI, C CHEN, A X GAO, et al. Dynamics of dimethylated monothioarsenate (DMMTA) in paddy soils and its accumulation in rice grains[J]. Environmental Science & Technology, 2021, 55(13): 8665-8674.
    [24] M OROVAL, C COLL, A BERNARDOS, et al. Selective fluorogenic sensing of As(III) using aptamer-capped nanomaterials[J]. ACS Applied Materials & Interfaces, 2017, 9(13): 11332-11336.
    [25] A A ENSAFI, N KAZEMIFARD, B REZAEI. A simple and sensitive fluorimetric aptasensor for the ultrasensitive detection of arsenic(III) based on cysteamine stabilized CdTe/ZnS quantum dots aggregation[J]. Biosensors & Bioelectronics, 2016(77): 499-504.
    [26] D L JOHNSON, M E Q PILSON. Spectrophotometric determination of arsenite, arsenate, and phosphate in natural waters[J]. Analytica Chimica Acta, 1972, 58(2): 289-299. doi: 10.1016/S0003-2670(72)80005-9
    [27] S HU, J LU, C JING. A novel colorimetric method for field arsenic speciation analysis[J]. Journal of Environmental Sciences, 2012, 24(7): 1341-1346. doi: 10.1016/S1001-0742(11)60922-4
    [28] S ZHAN, M YU, J LV, et al. Colorimetric detection of trace arsenic(iii) in aqueous solution using arsenic aptamer and gold nanoparticles[J]. Australian Journal of Chemistry, 2014, 67(5): 813-818. doi: 10.1071/CH13512
    [29] N PRIYADARSHNI, P NATH, NAGAHANUMAIAH, et al. DMSA-Functionalized Gold Nanorod on Paper for Colorimetric Detection and Estimation of Arsenic (Ill and V) Contamination in Groundwater[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(5): 6264-6272.
    [30] M TIGHE, M M EDWARDS, G CLULEY, et al. Colorimetrically determining total antimony in contaminated waters and screening for antimony speciation[J]. Journal of Hydrology, 2018(563): 84-91.
    [31] L SONG, K MAO, X ZHOU, et al. A novel biosensor based on Au@Ag core-shell nanoparticles for SERS detection of arsenic (III)[J]. Talanta, 2016(146): 285-290.
    [32] J DU, J CUI, C JING. Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor[J]. Chemical Communications, 2014, 50(3): 347-349. doi: 10.1039/C3CC46920D
    [33] M YANG, V LIAMTSAU, C FANG, et al. Arsenic speciation on silver nanofilms by surface-enhanced Raman spectroscopy[J]. Analytical Chemistry, 2019, 91(13): 8280-8288. doi: 10.1021/acs.analchem.9b00999
    [34] V LIAMTSAU, C FAN, G LIU, et al. Speciation of thioarsenicals through application of coffee ring effect on gold nanofilm and surface-enhanced Raman spectroscopy[J]. Analytica Chimica Acta, 2020(1106): 88-95.
    [35] A Y PANARIN, I A KHODASEVICH, O L GLADKOVA, et al. Determination of Antimony by Surface-Enhanced Raman Spectroscopy[J]. Applied Spectroscopy, 2014, 68(3): 297-306. doi: 10.1366/13-07034
    [36] 陈仁杰, 黄婷婷, 吕良勇, 等. ICP-MS测定陶瓷片密封水嘴浸泡液中镉含量的不确定度分析[J]. 计量学报, 2018, 39(6): 914-917. doi: 10.3969/j.issn.1000-1158.2018.06.30
    [37] A A ENSAFI, F AKBARIAN, E HEYDARI SOURESHJANI, et al. A novel aptasensor based on 3D-reduced graphene oxide modified gold nanoparticles for determination of arsenite[J]. Biosensors & Bioelectronics, 2018(122): 25-31.
    [38] N MOGHIMI, M MOHAPATRA, K T LEUNG. Bimetallic nanoparticles for arsenic detection[J]. Anal. Chem., 2015, 87(11): 5546-5552. doi: 10.1021/ac504116d
    [39] R GUPTA, J S GAMARE, A K PANDEY, et al. Highly Sensitive Detection of Arsenite Based on Its Affinity toward Ruthenium Nanoparticles Decorated on Glassy Carbon Electrode[J]. Anal. Chem., 2016, 88(4): 2459-2465. doi: 10.1021/acs.analchem.5b04625
    [40] 周明慧, 伍燕湘, 陈曦, 等. 基于不确定度评价对稻米中镉元素分析标准物质高精度定值方法的比较[J]. 计量学报, 2021, 42(5): 650-657. doi: 10.3969/j.issn.1000-1158.2021.05.17
  • 加载中
图(7)
计量
  • 文章访问数:  555
  • HTML全文浏览量:  223
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 录用日期:  2022-03-22
  • 网络出版日期:  2022-04-04
  • 刊出日期:  2022-07-29

目录

    /

    返回文章
    返回