留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

去除杂质干扰的定量核磁共振法进展综述

黄挺 王静羽 万康妮

黄挺,王静羽,万康妮. 去除杂质干扰的定量核磁共振法进展综述[J]. 计量科学与技术,2022, 66(6): 26-30 doi: 10.12338/j.issn.2096-9015.2021.0594
引用本文: 黄挺,王静羽,万康妮. 去除杂质干扰的定量核磁共振法进展综述[J]. 计量科学与技术,2022, 66(6): 26-30 doi: 10.12338/j.issn.2096-9015.2021.0594
HUANG Ting, WANG Jingyu, WAN Kangni. Review of Advances in Quantitative Nuclear Magnetic Resonance Methods for Removing Impurity Interference[J]. Metrology Science and Technology, 2022, 66(6): 26-30. doi: 10.12338/j.issn.2096-9015.2021.0594
Citation: HUANG Ting, WANG Jingyu, WAN Kangni. Review of Advances in Quantitative Nuclear Magnetic Resonance Methods for Removing Impurity Interference[J]. Metrology Science and Technology, 2022, 66(6): 26-30. doi: 10.12338/j.issn.2096-9015.2021.0594

去除杂质干扰的定量核磁共振法进展综述

doi: 10.12338/j.issn.2096-9015.2021.0594
基金项目: 中国计量科学研究院基本科研业务费项目(21-AKYZZ2120-21)。
详细信息
    作者简介:

    黄挺(1979-),中国计量科学研究院研究员,研究方向:化学计量、分析化学等,邮箱:huangting@nim.ac.cn

Review of Advances in Quantitative Nuclear Magnetic Resonance Methods for Removing Impurity Interference

  • 摘要: 定量核磁共振(qNMR)是有机化合物纯度定值的潜在基准方法,可以建立绝大部分有机化合物的计量溯源。分析了近年来建立的可以将杂质峰与待测物的定量峰进行有效分离的定量核磁共振法的原理、优点与挑战,包括高效液相色谱(HPLC)与定量核磁共振法(qNMR)结合的方法:双氘代流动相的HPLC-qNMR、单氘代流动相的HPLC-单信号抑制qNMR、HPLC-双信号抑制qNMR、内标回收校正(ISRC)-HPLC-qNMR、内标校正(ISC)-HPLC-qNMR、色谱辅助定量核磁共振的扩展内标法(EIC)、肽杂质校正定量核磁共振法(PICqNMR),二维核磁共振法:定量异核单量子相关核磁共振法(qHSQC)等,以及HPLC-qNMR-HPLC法。这些方法减少了qNMR中潜在的系统误差,提高了结果的准确性,扩大了qNMR作为计量潜在基准方法和常规分析方法的应用范围。
  • 图  1  扩展内标法的示意图

    注:A为标准溶液的色谱峰面积;I为标准溶液的核磁共振峰面积;A'为样品溶液的色谱峰面积;I'为样品溶液的核磁共振峰面积。

    Figure  1.  Scheme of the extended internal standard method

  • [1] SAITO T, IWASAWA R, IHARA T, et al. Evaluation of accuracy for the quantitative analysis using Nuclear Magnetic Resonance as a detector of HPLC[J]. Chromatography, 2003, 24: 117-120.
    [2] GODEJOHANN M, PREISS A. Quantitative Measurements in Continuous-Flow HPLC/NMR[J]. Anal Chem, 1998, 70: 590-595. doi: 10.1021/ac970630s
    [3] HUANG T, ZHANG W, DAI X, et al. High performance liquid chromatography quantitative nuclear magnetic resonance (HPLC-qNMR) with a two-signal suppression method for purity assessment of avermectin B1a[J]. Anal Methods, 2016, 8: 4482-4486. doi: 10.1039/C6AY00570E
    [4] ZHANG W, HUANG T, LI H, et al. Determination of avermectins by the internal standard recovery correction - high performance liquid chromatography - quantitative Nuclear Magnetic Resonance method[J]. Talanta, 2017, 172: 78-85. doi: 10.1016/j.talanta.2017.04.080
    [5] SUN X, ZHANG W, HUANG T, et al. Purity determination of pyributicarb by internal standard correction–high-performance liquid chromatography–quantitativenuclear magnetic resonance[J]. Analytical and Bioanalytical Chemistry, 2020, 412: 6983-6993. doi: 10.1007/s00216-020-02832-0
    [6] SAITO N, KITAMAKI Y, OTSUKA S, et al. Extended internal standard method for quantitative 1H NMR assisted by chromatography (EIC) for analyte overlapping impurity on 1H NMR spectra[J]. Talanta, 2018, 184: 484-490. doi: 10.1016/j.talanta.2018.03.003
    [7] KITAMAKI Y, SAITO N, YAMAZAKI T, et al. Determination of PAHs in solution with a single reference standard by a combination of 1H quantitative NMR spectroscopy and chromatography[J]. Anal Chem, 2017, 89: 6963-6968. doi: 10.1021/acs.analchem.6b05074
    [8] JOSEPHS R D, STOPPACHER N, DAIREAUX A, et al. State-of-the-art and trends for the SI traceable value assignment of the purity of peptides using the model compound Angiotensin I[J]. Trends Anal Chem, 2018, 101: 108-119. doi: 10.1016/j.trac.2017.09.026
    [9] MELANSON J E, THIBEAULT M P, STOCKS B B, et al. Purity assignment for peptide certified reference materials by combining qNMR and LC-MS/MS amino acid analysis results: application to angiotensin II[J]. Anal Bioanal Chem, 2018, 410(26): 6719-6731. doi: 10.1007/s00216-018-1272-7
    [10] HEIKKINEN S, TOIKKA M M, KARHUNEN P T, et al. Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin[J]. J Am Chem Soc, 2003, 125: 4362-4367. doi: 10.1021/ja029035k
    [11] FARDUS-REID F, WARREN J, LE GRESLEY A. Validating heteronuclear 2D quantitative NMR[J]. Anal Methods, 2016, 8: 2013-2019. doi: 10.1039/C6AY00111D
    [12] HU K, ELLINGER J J, CHYLLA R A, et al. Measurement of absolute concentrations of individual compounds in metabolite mixtures by gradient-selective time-zero 1H-13C HSQC with two concentration references and fast maximum likelihood reconstruction analysis[J]. Anal Chem, 2011, 83(24): 9352-9360. doi: 10.1021/ac201948f
    [13] WANG T, LIU Q, WANG M, et al. Quantitative Measurement of a Chiral Drug in a Complex Matrix: a J-compensated HSQC (QHSQC) NMR Method[J]. Anal Chem, 2020, 92(5): 3636-3642. doi: 10.1021/acs.analchem.9b04591
    [14] GIRAUDEAU P, FRYDMAN L. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy[J]. Annu Rev Anal Chem, 2014, 7: 129-161. doi: 10.1146/annurev-anchem-071213-020208
    [15] GIRAUDEAU P, REMAUD G S, AKOKA S. Evaluation of ultrafast 2D NMR for quantitative analysis[J]. Anal Chem, 2009, 81: 479-484. doi: 10.1021/ac8021168
    [16] PATHAN M, AKOKA S, TEA I, et al. "Multi-scan single shot" quantitative 2D NMR: a valuable alternative to fast conventional quantitative 2D NMR[J]. Analyst, 2011, 136: 3157-3163. doi: 10.1039/c1an15278e
    [17] CAO R, NONAKA A, KOMURA F, et al. Application of diffusion ordered-1H-nuclear magnetic resonance spectroscopy to quantify sucrose in beverages[J]. Food Chem, 2015, 171: 8-12. doi: 10.1016/j.foodchem.2014.08.105
    [18] ZHANG W, HUANG T, LI H, et al. Purity measurement of human C-peptide by high performance liquid chromatography and quantitative nuclear magnetic resonance[J]. Int J Pept Res Ther, 2018, 24: 391-396. doi: 10.1007/s10989-017-9620-6
    [19] MA R, HUANG T, ZHANG W, et al. High performance liquid chromatography - quantitative nuclear magnetic resonance - high performance liquid chromatography for purity measurement of human insulin[J]. Journal of Liquid Chromatography & Related Technologies, 2018, 41(4): 170-179. doi: 10.1080/10826076.2018.1428622
    [20] CHYLLA R A, HU K, ELLINGER J J, et al. Deconvolution of two-dimensional NMR spectra by fast maximum likelihood reconstruction: application to quantitative metabolomics[J]. Anal Chem, 2011, 83: 4871-4880. doi: 10.1021/ac200536b
    [21] MEYER K, RADEMANN K, PANNE U, et al. Quantitative NMR spectroscopy for gas analysis for production of primary reference gas mixtures[J]. J Magnet Reson, 2016, 275: 1-10.
    [22] CLUFF K J, GOODWIN L A, HAMILTON C E, et al. Quantitative determination of wax contamination in polystyrene HIPE foam using solid-state NMR[J]. Fusion Sci Technol, 2018, 73: 183-218.
  • 加载中
图(1)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  128
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 录用日期:  2022-03-31
  • 网络出版日期:  2022-07-13
  • 刊出日期:  2022-07-29

目录

    /

    返回文章
    返回