留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳质气溶胶标准物质研究进展与方向

刘悦 肖骥 刘俊杰

刘悦,肖骥,刘俊杰. 碳质气溶胶标准物质研究进展与方向[J]. 计量科学与技术,2022, 66(6): 3-9 doi: 10.12338/j.issn.2096-9015.2021.0627
引用本文: 刘悦,肖骥,刘俊杰. 碳质气溶胶标准物质研究进展与方向[J]. 计量科学与技术,2022, 66(6): 3-9 doi: 10.12338/j.issn.2096-9015.2021.0627
LIU Yue, XIAO Ji, LIU Junjie. Research Progress and Direction of Carbonaceous Aerosol Reference Materials[J]. Metrology Science and Technology, 2022, 66(6): 3-9. doi: 10.12338/j.issn.2096-9015.2021.0627
Citation: LIU Yue, XIAO Ji, LIU Junjie. Research Progress and Direction of Carbonaceous Aerosol Reference Materials[J]. Metrology Science and Technology, 2022, 66(6): 3-9. doi: 10.12338/j.issn.2096-9015.2021.0627

碳质气溶胶标准物质研究进展与方向

doi: 10.12338/j.issn.2096-9015.2021.0627
基金项目: 国家质量基础的共性技术研究与应用项目(2017YFF0205303)。
详细信息
    作者简介:

    刘悦(1993-),中国计量科学研究院在站博士后,研究方向:碳质气溶胶计量,邮箱:liu-yue@nim.ac.cn

    通讯作者:

    刘俊杰(1975-),中国计量科学研究院副研究员,研究方向:颗粒物计量,邮箱:liujj@nim.ac.cn

Research Progress and Direction of Carbonaceous Aerosol Reference Materials

  • 摘要: 碳质气溶胶对气候与环境污染均具有重要影响,对碳质气溶胶的准确测量能够有效降低气溶胶辐射强迫评估以及大气来源解析等结果的不确定性,进一步为国内外制定相应的应对气候变化及减排的政策提供科学依据。本文综述了国内外碳质气溶胶的测量方法及影响因素,重点对现有标准方法及标准物质的研究进展与不足进行梳理总结,指出了碳质气溶胶标准物质研制方面的空白与需求。在此基础上,本文进一步从标准物质溯源性、有机碳元素碳典型代表物质的选取、OC/EC混合标准物质的配置以及碳酸盐碳的影响等多个方面指出了未来的研究方向和难点,为碳质气溶胶标准物质的深入研究提供参考。
  • 图  1  不同实验室标准蔗糖溶液测量结果比对[17]

    Figure  1.  Comparison of standardized sucrose solution measurement results in different laboratories[17]

    图  2  EUSAAR_2、NIOSH870及IMPROVE_A方法的碳质气溶胶测量结果比对[23]

    Figure  2.  Comparison of carbonaceous aerosol measurement results by EUSAAR_2, NIOSH870 and IMPROVE_A protocols[23]

    图  3  不同实验室(DRI、DRI2、SLI、NIST)对NIST RM 8785的测量结果比对[29]

    Figure  3.  Comparison of NIST RM 8785 measurement results from different laboratories (DRI, DRI2, SLI, NIST)[29]

    图  4  实验室模拟制备碳质气溶胶标准物质示意图[30]

    Figure  4.  Schematic of generation system of OC–EC reference materials[30]

    表  1  碳质气溶胶标准方法主要参数对比[22-24]

    Table  1.   Comparison of major parameters of different protocols for carbonaceous aerosol measurement[22-24]

    NIOSHNIOSH 5040IMPROVEIMPROVE_AEUSAAR_2
    步骤温度(℃),停留时间(s)
    He1310, 60250, 60120, 150 ~ 580140, 150 ~ 580200, 120
    He2475, 60500, 60250, 150 ~ 580280, 150 ~ 580300, 150
    He3615, 60650, 60450, 150 ~ 580480, 150 ~ 580450, 180
    He4900, 90850, 90550, 150 ~ 580580, 150 ~ 580650, 180
    (He/O2)1600, 45650, 30550, 150 ~ 580580, 150 ~ 580500, 120
    (He/O2)2675, 45750, 30700, 150 ~ 580740, 150 ~ 580550, 120
    (He/O2)3750, 45850, 30800, 150 ~ 580840, 150 ~ 580700, 70
    (He/O2)4825, 45940, 120850, 80
    (He/O2)5920, 120
    下载: 导出CSV
  • [1] PӦSCHL U. Atmospheric aerosols: Composition, transformation, climate and health effects[J]. Angewandte Chemie International Edition, 2005, 44(46): 7520-7540. doi: 10.1002/anie.200501122
    [2] BOND T C, DOHERTY S J, FAHEY D W, et al. Bounding the role of black carbon in the climate system: A scientific assessment[J]. Journal of Geophysical Research:Atmospheres, 2013, 118: 5380-5552. doi: 10.1002/jgrd.50171
    [3] BOUCHER O, RANDALL D, ARTAXO P, et al. Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2013: 571-658.
    [4] LELIEVELD J, CRUTZEN P J, RAMANATHAN V, et al. The Indian Ocean experiment: widespread air pollution from South and Southeast Asia[J]. Science, 2001, 291: 1031-1036. doi: 10.1126/science.1057103
    [5] RAMANATHAN V, CARMICHAEL G. Global and regional climate changes due to black carbon[J]. Nature Geoscience, 2008, 36(4): 335-358.
    [6] 李源清, 张晓东, 胡娜, 等. 基于统计数据郑州市全口径碳汇估算研究[J]. 计量学报, 2022, 43(2): 281-286.
    [7] 胡鹤鸣, 王池, 张金涛. 城市区域碳排放测量反演研究国际进展[J]. 计量学报, 2017, 38(1): 7-12. doi: 10.3969/j.issn.1000-1158.2017.01.02
    [8] KIRCHSTETTER T W, NOVAKOV T, LAMB K D, et al. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(D21): 1-12.
    [9] PARK R J, KIM M J, JEONG J I, et al. A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia[J]. Atmospheric Environment, 2010, 44(11): 1414-1421. doi: 10.1016/j.atmosenv.2010.01.042
    [10] CHAKRABARTY R K, MOOSMÜLLER H, CHEN L, et al. Brown carbon in tar balls from smoldering biomass combustion[J]. Atmospheric Chemistry and Physics, 2010, 10(13): 6363-6370. doi: 10.5194/acp-10-6363-2010
    [11] BAHADUR R, PRAVEEN P S, RAMANATHAN V, et al. Solar absorption by elemental and brown carbon determined from spectral observations[J]. Proceedings of the National Academy of Sciences, 2012, 109(43): 17366-17371. doi: 10.1073/pnas.1205910109
    [12] CHUNG C E, RAMANATHAN V, DECREMER D, et al. Observationally constrained estimates of carbonaceous aerosol radiative forcing[J]. Proceedings of the National Academy of Sciences, 2012, 109(29): 11624-11629. doi: 10.1073/pnas.1203707109
    [13] LIU Y, ZHENG M, YU M, et al. High-time-resolution source apportionment of PM2.5 in Beijing with multiple models[J]. Atmospheric Chemistry and Physics, 2019, 19(9): 6595-6609. doi: 10.5194/acp-19-6595-2019
    [14] 彭剑飞. 准实际大气烟雾箱研究烟炱(soot)颗粒物老化过程及性质演变[D]. 北京: 北京大学, 2014.
    [15] 程远. 含碳气溶胶采样与分析方法研究[D]. 北京: 清华大学, 2011.
    [16] YANG H, YU J Z. Uncertainties in charring correction in the analysis of elemental and organic carbon in atmospheric particles by thermal/optical methods[J]. Environmental Science & Technology, 2002, 36(23): 5199.
    [17] PANTELIADIS, HAFKENSCHEID, CARY, et al. ECOC comparison exercise with identical thermal protocols after temperature offset correction - instrument diagnostics by in-depth evaluation of operational parameters[J]. Atmospheric Measurement Techniques, 2015, 8: 779-792. doi: 10.5194/amt-8-779-2015
    [18] GENG G, QIANG Z, DAN T, et al. Chemical composition of ambient PM2.5 over China and relationship to precursor emissions during 2005–2012[J]. Atmospheric Chemistry & Physics, 2017, 17(14): 1-25.
    [19] TAO J, ZHANG L, CAO J, et al. A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China[J]. Atmospheric Chemistry and Physics, 2017, 17(15): 9485-9518. doi: 10.5194/acp-17-9485-2017
    [20] ZIKOVA N, HOPKE P K, FERRO A R. Evaluation of new low-cost particle monitors for PM2.5 concentrations measurements[J]. Journal of Aerosol Science, 2016, 105: 24-34.
    [21] CHOW J C, WATSON J G, HOUCK J E, et al. A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions[J]. Atmospheric Environment, 1994, 28(21): 3463-3481. doi: 10.1016/1352-2310(94)90005-1
    [22] CAVALLI F, VIANA M, YTTRI K E, et al. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol[J]. Atmospheric Measurement Techniques, 2010, 3(1): 79-89. doi: 10.5194/amt-3-79-2010
    [23] BROWN R J C, BECCACECI S, BUTTERFIELD D, et al. Standardisation of a European measurement method for organic carbon and elemental carbon in ambient air: results of the field trial campaign and the determination of a measurement uncertainty and working range[J]. Environmental Science: Processes & Impacts, 2017, 19(10): 1249-1259.
    [24] CHIAPPINI L, VERLHAC S, AUJAY R, et al. Clues for a standardised thermal-optical protocol for the assessment of organic and elemental carbon within ambient air particulate matter[J]. Atmospheric Measurement Techniques, 2014, 7(6): 1649-1661. doi: 10.5194/amt-7-1649-2014
    [25] HUANG L, ZHANG W, SANTOS G M, et al. Application of the ECT9 protocol for radiocarbon-based source apportionment of carbonaceous aerosols[J]. Atmospheric Measurement Techniques, 2021, 14(5): 3481-3500. doi: 10.5194/amt-14-3481-2021
    [26] CHOW J C, WATSON J G, ROBLES J, et al. Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon[J]. Analytical and Bioanalytical Chemistry, 2011, 401(10): 3141-3152. doi: 10.1007/s00216-011-5103-3
    [27] CHOW J C, WANG X, SUMLIN B J, et al. Optical calibration and equivalence of a multiwavelength thermal/optical carbon analyzer[J]. Aerosol & Air Quality Research, 2015, 15(4): 1145-1159.
    [28] CURRIE L A, BENNER B A, KESSLER J D, et al. A Critical Evaluation of Interlaboratory Data on Total, Elemental, and Isotopic Carbon in the Carbonaceous Particle Reference Material, NIST SRM 1649a[J]. Journal of Research of the National Institute of Standards and Technology, 2002, 107(3): 279-298. doi: 10.6028/jres.107.022
    [29] KLOUDA G A, FILLIBEN J J, PERISH H J, et al. Reference Material 8785: Air Particulate Matter on Filter Media[J]. Aerosol Science and Technology, 2005, 39: 173-183. doi: 10.1080/027868290916453
    [30] MING CHAI, M EILEEN BIRCH, GREG DEYE. Organic and Elemental Carbon Filter Sets: Preparation Method and Interlaboratory Results[J]. Annals of Occupational Hygiene, 2012, 56(8): 959-967.
    [31] ZHENG G J, CHENG Y, HE K B, et al. A newly identified calculation discrepancy of the Sunset semi-continuous carbon analyzer[J]. Atmospheric Measurement Techniques, 2014, 7: 1969-1977. doi: 10.5194/amt-7-1969-2014
    [32] POPOVICHEVA O, BAUMGARDNER D, SUBRAMANIAN R, et al. Tailored graphitized soot as reference material for EC/OC measurement validation[J]. Atmospheric Measurement Techniques, 2011, 4(5): 923-932. doi: 10.5194/amt-4-923-2011
    [33] 王莉华, 董华斌, 闫才青, 等. 气溶胶OCEC切割点确定方法改进及应用[J]. 环境科学, 2012, 33(9): 2946-2952.
    [34] 庞博, 吉东生, 刘子锐, 等. 大气细颗粒物中有机碳和元素碳监测方法对比[J]. 环境科学, 2016, 37(4): 1230-1239.
    [35] 支国瑞, 陈颖军, 熊胜春, 等. 温度设置对热光法测定气溶胶中黑碳的影响[J]. 分析测试学报, 2008(4): 381-385. doi: 10.3969/j.issn.1004-4957.2008.04.010
    [36] 张娅蕴, 支国瑞, 田崇国, 等. 北京秋冬季有机碳和元素碳(黑碳)测试结果的细节研究[J]. 环境科学研究, 2017, 30(8): 1184-1192.
    [37] HAN Y M, CHEN L, HUANG R J, et al. Carbonaceous aerosols in megacity Xi'an, China: Implications of thermal/optical protocols comparison[J]. Atmospheric Environment, 2016, 132: 58-68. doi: 10.1016/j.atmosenv.2016.02.023
    [38] 黄梓宸, 周瑾艳, 黄彦捷, 等. 水中总有机碳溶液标准物质的研制[J]. 食品安全质量检测学报, 2019, 10(11): 3530-3535. doi: 10.3969/j.issn.2095-0381.2019.11.047
    [39] 王钊, 张诚春. 蔗糖总有机碳标准物质的研制[J]. 工业计量, 2018, 28(6): 103-106.
    [40] 白玉洁, 李红亮, 李微微, 等. 总有机碳分析仪校准用标准物质的研制[J]. 工业计量, 2020, 173(2): 84-86.
    [41] 白亚之, 朱爱美, 崔菁菁, 等. 中国近海沉积物氮和有机碳标准物质的研制[J]. 岩矿测试, 2014, 33(1): 74-80. doi: 10.3969/j.issn.0254-5357.2014.01.013
    [42] 杨佳佳, 孙玮琳, 徐学敏, 等. 高演化烃源岩岩石热解和总有机碳标准物质研制[J]. 地质学报, 2020, 94(11): 372-379.
    [43] 王苗苗, 姚雅萱, 黄博文, 等. 基于红外光谱法石墨烯材料官能团峰位的校准和准确测量方法研究[J]. 计量科学与技术, 2021(1): 79-88.
    [44] 吴丹, 高晓晶, 廖小卿, 等. 大气重金属在线监测系统的评价[J]. 计量科学与技术, 2021, 65(3): 32-35.
    [45] AK A, PP B, NP A, et al. Evaluation of the Semi-Continuous OCEC analyzer performance with the EUSAAR2 protocol[J]. Science of The Total Environment, 2020, 747: 141266.
    [46] 刘琼玉, 谈静, 钟章雄, 等. PM2.5中OC/EC测定的离线分析法与在线分析法比较[J]. 中国环境监测, 2019, 35(4): 123-130.
    [47] YU J Z, XU J H, YANG H. Charring Characteristics of Atmospheric Organic Particulate Matter in Thermal Analysis[J]. Environmental Science & Technology, 2002, 36: 754-761.
    [48] CHENG Y, HE K B, ENGLING G, et al. Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon[J]. Science of the Total Environment, 2017, 599–600: 1047-1055.
    [49] Cheng Y, Yu Q Q, Cao X B, et al. Strong Impacts of Legitimate Open Burning on Brown Carbon Aerosol in Northeast China[J]. Environmental Science & Technology Letters, 2021, 8: 732-738.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  449
  • HTML全文浏览量:  191
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2022-07-29

目录

    /

    返回文章
    返回