留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气颗粒物水溶性离子计量技术研究概述

李想 许潇

李想,许潇. 大气颗粒物水溶性离子计量技术研究概述[J]. 计量科学与技术,2022, 66(6): 31-37 doi: 10.12338/j.issn.2096-9015.2021.0637
引用本文: 李想,许潇. 大气颗粒物水溶性离子计量技术研究概述[J]. 计量科学与技术,2022, 66(6): 31-37 doi: 10.12338/j.issn.2096-9015.2021.0637
LI Xiang, XU Xiao. Metrological Investigations on Water-Soluble Ions in Atmospheric Particulate Matter[J]. Metrology Science and Technology, 2022, 66(6): 31-37. doi: 10.12338/j.issn.2096-9015.2021.0637
Citation: LI Xiang, XU Xiao. Metrological Investigations on Water-Soluble Ions in Atmospheric Particulate Matter[J]. Metrology Science and Technology, 2022, 66(6): 31-37. doi: 10.12338/j.issn.2096-9015.2021.0637

大气颗粒物水溶性离子计量技术研究概述

doi: 10.12338/j.issn.2096-9015.2021.0637
基金项目: 国家重点研发计划重点专项(2017YFF0205303)。
详细信息
    作者简介:

    李想(1999-),中国计量科学研究院研究生,研究方向:颗粒物计量,邮箱:lixiang@nim.ac.cn

    通讯作者:

    许潇(1985-),中国计量科学研究院副研究员,研究方向:颗粒物计量,邮箱:xuxiao@nim.ac.cn

Metrological Investigations on Water-Soluble Ions in Atmospheric Particulate Matter

  • 摘要: 水溶性离子是大气颗粒物的主要组分,是颗粒物化学组分监测与来源解析的关键指标。介绍了大气颗粒物水溶性离子的离线和在线监测方法、仪器设备和测量标准,分析了离线和在线监测计量技术与规程规范的现状,提出了离线监测中滤膜样品前处理环节存在标准物质缺失,以及在线监测中计量方法、标准物质和标准装置存在大量空白等问题。针对上述问题,对计量研究的发展方向进行了展望。
  • 图  1  颗粒物水溶性离子在线分析仪器结构

    Figure  1.  Scheme of instrument for online analysis of water-soluble ions in particulate matter

    图  2  在线连续式气体溶蚀器原理结构

    Figure  2.  Scheme of continuous denuders

    图  3  颗粒物收集器结构

    Figure  3.  Scheme of particle collector

  • [1] Center for Public Health and Environmental Assessment. Integrated Science Assessment for Particulate Matter: EPA/600/R-19/188[R]. Research Triangle Park, NC: US Environmental Protection Agency, 2019.
    [2] 李晓晓, 蒋靖坤, 王东滨, 等. 大气超细颗粒物来源及其化学组分研究进展[J]. 环境化学, 2021, 40(10): 2947-2959. doi: 10.7524/j.issn.0254-6108.2021032701
    [3] 杨帆, 徐建平, 翁祖峰, 等. 区域大气细颗粒物化学组分及来源年变化趋势[J]. 环境监控与预警, 2020, 12(6): 7-11. doi: 10.3969/j.issn.1674-6732.2020.06.002
    [4] 白志鹏, 王宝庆, 王秀艳, 等. 空气颗粒物污染与防治[M]. 北京: 化学工业出版社, 2011: 3-6.
    [5] SOLOMON PA, CRUMPLER D, FLANAGAN JB, et al. US National PM2.5 Chemical Speciation Monitoring Networks-CSN and IMPROVE: Description of networks[J]. Journal of the Air & Waste Management Association, 2014, 64: 1410-1438.
    [6] US Environmental Protection Agency. Part 53 - Ambient Air Mmonitoring Reference and Equivalent Methods[EB/OL]. [2021-10-25].https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-53.
    [7] European Committee for Standardization. Ambient air - Standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter: EN 12341: 2014 [S]. Brussels: European Committee for Standardization, 2014.
    [8] 国家环境保护总局. 环境空气 总悬浮颗粒物的测定 重量法: GB/T 15432-1995[S]. 北京: 中国标准出版社, 1995.
    [9] 环境保护部. 环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范: HJ 656-2013[S]. 北京: 中国环境科学出版社, 2013.
    [10] 环境保护部. 环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法: HJ 93-2013[S]. 北京: 中国环境科学出版社, 2013.
    [11] 环境保护部. 环境空气质量手工监测技术规范: HJ 194-2017[S]. 北京: 中国环境科学出版社, 2017.
    [12] 国家市场监督管理总局, 国家标准化管理委员会. 环境空气 颗粒物质量浓度测定 重量法: GB/T 39193-2020[S]. 北京: 中国标准出版社, 2020.
    [13] European Committee for Standardization. Ambient air - Guide for the measurement of anions and cations in PM2.5: CEN/TR 16269: 2011[S]. Brussels: European Committee for Standardization, 2011.
    [14] European Committee for Standardization. Ambient air - Standard method for measurement of NO3-, SO42-, CI-, NH4+, Na+, K+, Mg2+, Ca2+ in PM2.5 as deposited on filters: EN 16913: 2017 [S]. Brussels: European Committee for Standardization, 2017.
    [15] 环境保护部. 环境空气 颗粒物中水溶性阴离子(F-、Cl-、Br-、NO2-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法: HJ 799-2016[S]. 北京: 中国环境科学出版社, 2016.
    [16] 环境保护部. 环境空气 颗粒物中水溶性阳离子(Li+、Na+、NH4+、K+、Ca2+、Mg2+)的测定 离子色谱法: HJ 800-2016[S]. 北京: 中国环境科学出版社, 2016.
    [17] 生态环境部. 环境空气颗粒物来源解析监测技术方法指南[EB/OL]. [2021-10-25].https://www.mee.gov.cn/xxgk2018/xxgk/sthjbsh/202005/W020200514318605389760.pdf.
    [18] LOTHAR K, CLAUS W. Effect of filter type and temperature on volatilisation losses from ammonium salts in aerosol matter[J]. Atmospheric Environment, 2005, 39: 4093-4100. doi: 10.1016/j.atmosenv.2005.03.029
    [19] LOTHAR K, CLAUS W. Laboratory studies on the retention of nitric acid, hydrochloric acid and ammonia on aerosol filters[J]. Atmospheric Environment, 2005, 39: 2157-2162. doi: 10.1016/j.atmosenv.2004.12.021
    [20] SIMON P K, DASGUPTA P K. Continuous Automated Measurement of the Soluble Fraction of Atmospheric Particulate Matter[J]. Analytical Chemistry, 1995, 67: 71-78.
    [21] WYERS P, BRINK H T, BRANDSMA M, et al. Continuous measurements of size distribution atmospheric aerosol, (NH4)2SO4, H2SO4, NH4NO3, HNO3 and NO, NO2, SO2, O3 near Novosibirsk in 1994 ~ 1995[J]. Journal of Aerosol Science, 1995, 26: S381-S382. doi: 10.1016/0021-8502(95)97098-Y
    [22] WEBER R J, ORSINI D, DAUN Y, et al. A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition[J]. Aerosol Science & Technology, 2001, 35: 718-727.
    [23] American National Standards Institute. Gravimetric and Dust-Spot Procedures for Testing Air-Cleaning Devices Used in General Ventilation for Removing Particulate Matter: ANSI/ASHRAE 52.1-1992 [S]. Atlanta: ASHRAE Publication Sales, 1992.
    [24] European Committee for Standardization. Respiratory protective devices - Methods of test - Part 7: Determination of particle filter penetration: EN 13274-7: 2019[S]. Brussels: European Committee for Standardization, 2019.
    [25] 国家标准化管理委员会, 国家市场监督管理总局. 高效空气过滤器性能试验方法 效率和阻力: GB/T 6165-2021[S]. 北京: 中国标准出版社, 2021.
    [26] 国家质量监督检验检疫总局. 粉尘采样器: JJG 520-2005[S]. 北京: 中国质检出版社, 2005.
    [27] 国家质量监督检验检疫总局. 总悬浮颗粒物采样器: JJG 943-2011[S]. 北京: 中国质检出版社, 2011.
    [28] 国家质量监督检验检疫总局. 烟尘采样器: JJG 680-2007[S]. 北京: 中国质检出版社, 2007.
    [29] 国家质量监督检验检疫总局. PM2.5质量浓度测量仪校准规范: JJF 1659-2017[S]. 北京: 中国质检出版社, 2017.
    [30] 修宏宇, 崔伟群, 刘俊杰, 等. 采用蒙特卡洛法评定PM2.5切割粒径的不确定度[J]. 计量技术, 2017(11): 3-7.
    [31] 张文阁, 刘巍, 许潇, 等. PM2.5监测仪检测用国家一级标准物质的研制[J]. 计量学报, 2019, 40(1): 159-163. doi: 10.3969/j.issn.1000-1158.2019.01.26
    [32] 张文阁, 周文刚, 许潇, 等. PM10监测仪检测用国家一级标准物质的研制[J]. 中国计量, 2020(2): 83-85.
    [33] 刘佳琪, 张国城, 吴丹, 等. 基于静态箱法的PM2.5切割器捕集效率评价及拟合曲线优化研究[J]. 计量学报, 2021, 41(10): 1398-1403. doi: 10.3969/j.issn.1000-1158.2021.10.21
    [34] 王婷, 刘巍, 张明, 等. 切割器切割特性试验装置的功能性验证方法探讨[J]. 计量科学与技术, 2022, 66(1): 41-45. doi: 10.12338/j.issn.2096-9015.2020.0371
    [35] KOUTRAKIS P, THOMPSON K M, WOLFSON J M, et al. Determination of aerosol strong acidity losses due to interactions of collected particles: Results from laboratory and field studies[J]. Atmospheric Environment. Part A. General Topics, 1992, 26: 987-995. doi: 10.1016/0960-1686(92)90030-O
    [36] ZHANG X Q, MCMURRY P H. Evaporative losses of fine particulate nitrates during sampling[J]. Atmospheric Environment. Part A. General Topics, 1992, 26: 3305-3312. doi: 10.1016/0960-1686(92)90347-N
    [37] 张文阁, 刘巍. 环境空气颗粒物测量中采样滤膜的应用[J]. 中国计量, 2020(6): 86-88.
    [38] HERING S, CASS G. The Magnitude of Bias in the Measurement of PM2.5 Arising from Volatilization of Particulate Nitrate from Teflon Filters[J]. Journal of the Air & Waste Management Association, 1999, 49: 725-733.
    [39] 国家质量监督检验检疫总局. 离子色谱仪检定规程: JJG 823-2014[S]. 北京: 中国质检出版社, 2014.
    [40] 国家质量监督检验检疫总局. 原子吸收分光光度计检定规程: JJG 694-2009[S]. 北京: 中国质检出版社, 2009.
    [41] EMMA G, SANTORO A, SNELL J, et al. CERTIFICATION REPORT The certification of water-soluble ions in a fine dust (PM2.5-like) material: ERM®-CZ110[EB/OL]. [2021-10-25].https://crm.jrc.ec.europa.eu/p/ERM-CZ110.
    [42] HSIAO T C, ENGLING G, CHANG P Y, et al. Effect of flow rate on detection limit of particle size for a steam-based aerosol collector[J]. Atmospheric Environment, 2019, 202: 160-166. doi: 10.1016/j.atmosenv.2019.01.014
    [43] 张文慧, 彭杏, 田瑛泽, 等. PM2.5中典型水溶性离子在线观测标准曲线优化研究[J]. 中国环境监测, 2020, 36: 214-224.
    [44] 袁超, 王韬, 高晓梅, 等. 大气PM2.5在线监测仪对SO42-, NO3-和NH4+的测定评价[J]. 环境化学, 2012, 31(11): 1808-1815.
    [45] 杨懂艳, 刘保献, 石爱军, 等. PM2.5在线水溶性离子与滤膜采集-实验室检测的比对分析[J]. 环境科学, 2016, 37(10): 3730-3736.
    [46] TAGHVAEE S, MOUSAVI A, SOWLAT M H, et al. Development of a novel aerosol generation system for conducting inhalation exposures to ambient particulate matter (PM)[J]. Science of the Total Environment, 2019, 665: 1035-1045. doi: 10.1016/j.scitotenv.2019.02.214
  • 加载中
图(3)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  84
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 录用日期:  2022-03-31
  • 网络出版日期:  2022-04-22
  • 刊出日期:  2022-07-29

目录

    /

    返回文章
    返回