留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高灵敏度矢量原子磁力仪研究进展概述

陈文 高颖 蒋志远 屈继峰

陈文,高颖,蒋志远,等. 高灵敏度矢量原子磁力仪研究进展概述[J]. 计量科学与技术,2022, 66(4): 19-25, 39 doi: 10.12338/j.issn.2096-9015.2021.0651
引用本文: 陈文,高颖,蒋志远,等. 高灵敏度矢量原子磁力仪研究进展概述[J]. 计量科学与技术,2022, 66(4): 19-25, 39 doi: 10.12338/j.issn.2096-9015.2021.0651
CHEN Wen, GAO Ying, JIANG Zhiyuan, QU Jifeng. Reviews of the Research Progress of High-Sensitivity Vector Atomic Magnetometer[J]. Metrology Science and Technology, 2022, 66(4): 19-25, 39. doi: 10.12338/j.issn.2096-9015.2021.0651
Citation: CHEN Wen, GAO Ying, JIANG Zhiyuan, QU Jifeng. Reviews of the Research Progress of High-Sensitivity Vector Atomic Magnetometer[J]. Metrology Science and Technology, 2022, 66(4): 19-25, 39. doi: 10.12338/j.issn.2096-9015.2021.0651

高灵敏度矢量原子磁力仪研究进展概述

doi: 10.12338/j.issn.2096-9015.2021.0651
基金项目: 国家自然科学基金青年项目(61805226)。
详细信息
    作者简介:

    陈文(1994-),中国计量科学研究院联合培养研究生,研究方向:原子磁力仪,邮箱:Chenw@cjlu.edu.cn

    通讯作者:

    蒋志远(1986-),中国计量科学研究院副研究员,研究方向:芯片级量子器件,邮箱:jiangzhiyuan@nim.ac.cn

Reviews of the Research Progress of High-Sensitivity Vector Atomic Magnetometer

  • 摘要: 磁场作为一个矢量场,具有大小和方向信息,如何在现有标量原子磁力仪中实现磁场矢量的高精度测量,已经成为了原子磁力仪研究的一个重要方向。在单一原子磁力仪中同时实现磁场大小和方向的探测,一方面可以获得更多的磁场信息,更全面与准确的表征磁源,另一方面可以减小移动平台中磁测装置体积。将矢量原子磁力仪分为配置外加磁场与全光探测两条技术路线,介绍了高灵敏度矢量原子磁力仪的基本原理、国内外研究现状以及未来的研究方向。对几种主要的矢量磁力仪技术路线进行了介绍和归纳,包括外加磁场补偿法、偏置磁场调制法、射频场佛克托效应(Voigt Effect)法、电磁感应透明(EIT)探测法以及Bell-Bloom全光测量法等,并对高灵敏度矢量原子磁力仪在未来的发展方向和应用前景进行了展望。
  • 图  1  基于SERF磁力仪的矢量磁力仪光路结构示意图

    Figure  1.  Schematic diagram of optical path structure of vector magnetometer based on SERF magnetometer

    图  2  外加偏置磁场的光路结构与原理示意图

    Figure  2.  Schematic diagram of the optical path structure and principle of the applied bias magnetic field

    图  3  Bell-Bloom 磁力仪原理图

    Figure  3.  Schematic diagram of Bell-Bloom magnetometer

    图  4  二维平面内的磁场投影原理示意图

    Figure  4.  Schematic diagram of the principle of magnetic projection in two-dimensional plane

    图  5  基本光路结构示意图

    Figure  5.  Schematic diagram of basic optical path structure

    图  6  两种不同的Bell-Bloom 磁力仪配置方案

    Figure  6.  Two configurations of Bell-Bloom magnetometers with pumping beams

  • [1] 刘腾. 航空反潜的现状和发展综述[J]. 中国新通信, 2019, 21(8): 74-77. doi: 10.3969/j.issn.1673-4866.2019.08.062
    [2] 王光源, 马海洋, 章尧卿. 航空磁探仪探潜目标磁梯度定位方法[J]. 兵工自动化, 2011, 30(1): 32-34,38. doi: 10.3969/j.issn.1006-1576.2011.01.010
    [3] 董鹏, 孙哲, 邹念洋, 等. 国外磁探潜装备现状及发展趋势[J]. 舰船科学技术, 2018, 40(11): 166-169. doi: 10.3404/j.issn.1672-7649.2018.11.034
    [4] 沈平子, 贺青, 张钟华, 等. 电磁计量单位制沿革[J]. 计量技术, 2019(5): 36-42,80.
    [5] 唐列娟, 殷恭维, 林钢. 磁通门磁力计测地磁研究[J]. 传感器与微系统, 2006, 25(10): 10-12. doi: 10.3969/j.issn.1000-9787.2006.10.004
    [6] Le Maire P, Bertrand L, Munschy M, et al. Aerial magnetic mapping with an unmanned aerial vehicle and a fluxgate magnetometer: A new method for rapid mapping and upscaling from the field to regional scale[J]. Geophysical Prospecting, 2020, 68(7): 2307-2319. doi: 10.1111/1365-2478.12991
    [7] 丁鸿佳, 隋厚堂. 磁通门磁力仪和探头研制的最新进展[J]. 地球物理学进展, 2004, 19(4): 743-745. doi: 10.3969/j.issn.1004-2903.2004.04.004
    [8] Koch R H, Deak J G, Grinstein G. Fundamental limits to magnetic-field sensitivity of flux-gate magnetic-field sensors[J]. Applied Physics Letters, 1999, 75(24): 3862-3864. doi: 10.1063/1.125481
    [9] 张昌达. 量子磁力仪研究和开发近况[J]. 物探与化探, 2005, 29(4): 283-287.
    [10] Kleiner R, Koelle D, Ludwig F, et al. Superconducting quantum interference devices: State of the art and applications[J]. Proceedings of the IEEE, 2004, 92(10): 1534-1548. doi: 10.1109/JPROC.2004.833655
    [11] Hong T, Wang H, Zhang Y, et al. Flux modulation scheme for direct current SQUID readout revisited[J]. Applied Physics Letters, 2016, 108(6): 062601. doi: 10.1063/1.4941665
    [12] Crété D, Sène A, Labbé A, et al. Evaluation of Josephson junction parameter dispersion effects in arrays of HTS SQUIDs[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(7): 1-6.
    [13] 谢胤,罗方雪,张樊,等. 基于铯光泵磁力仪的地磁噪声补偿技术[J]. 计测技术, 2022, 42(1): 26-31.
    [14] Alexandrov E B, Balabas M V, Kulyasov V N, et al. Three-component variometer based on a scalar potassium sensor[J]. Measurement Science and Technology, 2004, 15(5): 918-922. doi: 10.1088/0957-0233/15/5/020
    [15] Gravrand O, Khokhlov A, JL L M, et al. On the calibration of a vectorial 4He pumped magnetometer[J]. Earth, planets and space, 2001, 53(10): 949-958. doi: 10.1186/BF03351692
    [16] Seltzer S J, Romalis M V. Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer[J]. Applied physics letters, 2004, 85(20): 4804-4806. doi: 10.1063/1.1814434
    [17] Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical review letters, 2002, 89(13): 130801. doi: 10.1103/PhysRevLett.89.130801
    [18] Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 1973, 31(5): 273. doi: 10.1103/PhysRevLett.31.273
    [19] Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15): 151110. doi: 10.1063/1.3491215
    [20] Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599. doi: 10.1038/nature01484
    [21] 贺青, 邵海明, 梁成斌. 电磁计量学研究进展评述[J]. 计量学报, 2021, 42(11): 1543-1552. doi: 10.3969/j.issn.1000-1158.2021.11.21
    [22] 董海峰, 李继民. 三轴矢量原子磁力仪综述[J]. 导航与控制, 2018, 17(5): 18-25. doi: 10.3969/j.issn.1674-5558.2018.05.003
    [23] Seltzer S J. Developments in alkali-metal atomic magnetometry[M]. Princeton: Princeton University, 2008.
    [24] Zigdon T, Wilson-Gordon A D, Guttikonda S, et al. Nonlinear magneto-optical rotation in the presence of a radio-frequency field[J]. Optics express, 2010, 18(25): 25494-25508. doi: 10.1364/OE.18.025494
    [25] Fairweather A J, Usher M J. A vector rubidium magnetometer[J]. Journal of Physics E:Scientific Instruments, 1972, 5(10): 986. doi: 10.1088/0022-3735/5/10/018
    [26] Vershovskii A K. Project of laser-pumped quantum mx magnetometer[J]. Technical Physics Letters, 2011, 37(2): 140-143. doi: 10.1134/S1063785011020155
    [27] Ingleby S J, O’Dwyer C, Griffin P F, et al. Vector magnetometry exploiting phase-geometry effects in a double-resonance alignment magnetometer[J]. Physical Review Applied, 2018, 10(3): 034035. doi: 10.1103/PhysRevApplied.10.034035
    [28] Pyragius T, Florez H M, Fernholz T. Voigt-effect-based three-dimensional vector magnetometer[J]. Physical Review A, 2019, 100(2): 023416. doi: 10.1103/PhysRevA.100.023416
    [29] 伏吉庆, 贺青, 张伟. 激光泵浦的铯-氦磁力仪的信号特征[J]. 计量学报, 2020, 41(3): 354-358. doi: 10.3969/j.issn.1000-1158.2020.03.16
    [30] Yudin V I, Taichenachev A V, Dudin Y O, et al. Vector magnetometry based on electromagnetically induced transparency in linearly polarized light[J]. Physical Review A, 2010, 82(3): 033807. doi: 10.1103/PhysRevA.82.033807
    [31] Lenci L, Auyuanet A, Barreiro S, et al. Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor[J]. Physical Review A, 2014, 89(4): 043836. doi: 10.1103/PhysRevA.89.043836
    [32] Bell W E, Bloom A L. Optically driven spin precession[J]. Physical Review Letters, 1961, 6(6): 280. doi: 10.1103/PhysRevLett.6.280
    [33] Bloom A L. Principles of operation of the rubidium vapor magnetometer[J]. Applied Optics, 1962, 1(1): 61-68. doi: 10.1364/AO.1.000061
    [34] Patton B, Zhivun E, Hovde D C, et al. All-optical vector atomic magnetometer[J]. Physical review letters, 2014, 113(1): 013001. doi: 10.1103/PhysRevLett.113.013001
    [35] 陈林, 黄海超, 董海峰. 基于 Cs 原子磁力仪的高灵敏度磁场方向测量方法[J]. 传感器与微系统, 2017(8): 11-13.
    [36] Sun W M, Huang Q, Huang Z J, et al. All-optical vector cesium magnetometer[J]. Chinese Physics Letters, 2017, 34(5): 58501. doi: 10.1088/0256-307X/34/5/058501
    [37] Huang H C, Dong H F, Hu X Y, et al. Three-axis atomic magnetometer based on spin precession modulation[J]. Applied Physics Letters, 2015, 107(18): 182403. doi: 10.1063/1.4935096
    [38] Cai B, Hao C P, Qiu Z R, et al. Herriott-cavity-assisted all-optical atomic vector magnetometer[J]. Physical Review A, 2020, 101(5): 053436.
  • 加载中
图(6)
计量
  • 文章访问数:  752
  • HTML全文浏览量:  351
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 录用日期:  2021-12-21
  • 网络出版日期:  2022-04-22
  • 刊出日期:  2022-06-02

目录

    /

    返回文章
    返回