留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基质辅助激光解吸电离-质谱成像技术(MALDI-MSI)及其在脑神经性疾病研究中的应用

金涛 潘本松 聂洪港

金涛,潘本松,聂洪港. 基质辅助激光解吸电离-质谱成像技术(MALDI-MSI)及其在脑神经性疾病研究中的应用[J]. 计量科学与技术,2022, 66(3): 3-22 doi: 10.12338/j.issn.2096-9015.2022.0030
引用本文: 金涛,潘本松,聂洪港. 基质辅助激光解吸电离-质谱成像技术(MALDI-MSI)及其在脑神经性疾病研究中的应用[J]. 计量科学与技术,2022, 66(3): 3-22 doi: 10.12338/j.issn.2096-9015.2022.0030
JIN Tao, PAN Bensong, NIE Honggang. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging and its Application in the Study of Brain Neurological Disease[J]. Metrology Science and Technology, 2022, 66(3): 3-22. doi: 10.12338/j.issn.2096-9015.2022.0030
Citation: JIN Tao, PAN Bensong, NIE Honggang. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging and its Application in the Study of Brain Neurological Disease[J]. Metrology Science and Technology, 2022, 66(3): 3-22. doi: 10.12338/j.issn.2096-9015.2022.0030

基质辅助激光解吸电离-质谱成像技术(MALDI-MSI)及其在脑神经性疾病研究中的应用

doi: 10.12338/j.issn.2096-9015.2022.0030
详细信息
    作者简介:

    金涛:金 涛(1970-),黑龙江大学教授,研究方向:生物制药学和微生物学,邮箱:taotao604@qq.com

    通讯作者:

    金涛(1970-),黑龙江大学教授,研究方向:生物制药学和微生物学,邮箱:taotao604@qq.com

    聂洪港(1980-),北京大学高级工程师,研究方向:质谱成像等,邮箱:hgnie@pku.edu.cn

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging and its Application in the Study of Brain Neurological Disease

  • 摘要: 大脑是人体内结构最精细、功能最复杂的高级器官,其化学物质种类众多、功能多样、作用机制复杂。研究证明,脑中枢神经系统疾病的病变脑组织都涉及到一些神经分子的改变。但由于分析检测手段、样品制备、成像技术等原因,对脑神经组织进行成分分析、功能鉴定、空间分布等研究一直是个难点。随着质谱技术的发展和成像软件的发展,一种新分析检测方法,质谱成像技术(Mass Spectrometry Imaging ,MSI)应运而生。该技术把高灵敏度的质谱和提供检测物空间信息的成像软件相结合,是一种具有高灵敏、没有特异性标记且可同时监测多种目标分子空间分布和含量变化的成像技术,为绘制脑神经组织中分子的空间分布和含量变化提供了新的选择。其中,基质辅助激光解吸电离-质谱成像技术(Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging,MALDI-MSI)在蛋白质、脂质、药物和小分子物质检测上的优势显著,广泛应用于生物组织的成像研究,尤其是脑神经组织。目前,随着一些MSI定量分析方法和校正策略的出现,定量质谱成像技术(q-MSI)越来越成熟,不仅可用于可视化生物组织中各种分子的含量及原位分布信息,还可提供浓度的绝对分析,具有广阔的应用前景。本文旨在简要介绍MALDI-MSI的基本原理、操作流程、样品处理、基质选择与喷涂、数据采集与分析,质谱成像的定性、定量分析方法,并对该技术在常见脑神经疾病(如帕金森病、阿尔茨海默病、多发硬化症、脑损伤和缺血性脑卒中等)中的应用进展进行综述,有助于了解脑中枢神经功能、疾病形成机制和神经药物的代谢机理,有利于发现新的药物靶点以及生物标志物,为研究其治疗策略的潜在机制提供参考,并对未来发展方向进行了展望。
  • 图  1  MALDI-MSI成像[2]

    Figure  1.  MALDI-MSI imaging[2]

    表  1  MALDI-IMS的商业软件/开放软件包

    Table  1.   Commercial software / open software package of MALDI-IMS

    软件特点及功能References
    QUIMBI商业软件,预处理工具ProViM,MSI数据的可视化和多元分析处理相结合[63]
    MALDIVision商业软件imzML格式,二维和三维IMS数据可视化、对比分析、图像校正(光学图像到IMS数据)[64]
    Quantinetix商业软件,IMS数据可视化、定量分析[65]
    Cardinal商业软件,R软件包,IMS数据可视化,光谱数据预处理,PCA,PLS-DA,分类,空间分割[66]
    SCiLS Lab商业软件,二维和三维IMS数据可视化、对比分析、分类建模、带注释的空间分割[67]
    MALDIQuantR软件包,IMS数据可视化,光谱数据预处理,定量分析[68]
    massPixR软件包,数据可视化,假定脂质注释,分类,主成分分析,k-均值聚类[69]
    MirionMS图像数据的可视化与自动处理[70]
    msIQuant免费软件,IMS数据的定性和定量分析、光谱预处理、校准、超大数据集分析(>50GB)[71]
    MSiReader免费软件,MATLAB工具,读取各种IMS数据文件格式,IMS数据可视化,光谱预处理[72]
    OpenMSI免费软件,基于Web的IMS数据可视化、定性分析和管理工具[73]
    rMSI免费软件,R软件包,用于IMS数据可视化、定性分析[74]
    SpectralAnalysis免费软件,MATLAB工具,IMS数据的可视化、定性分析,光谱预处理,PCA,NMF,MAF,PLSA[75]
    SpectViewer免费软件,IMS数据可视化,协助数据解释、分类、图像校正和叠加[76]
    MassImager免费软件,人工智能病理诊断、多离子可视化、多通道叠加、图像归一化,有监督或无监督的多元统计自动识别生物标记物[77]
    下载: 导出CSV
  • [1] TRIFONOVA O P, MASLOV D L, BALASHOVA E E, et al. Parkinson's Disease: Available Clinical and Promising Omics Tests for Diagnostics, Disease Risk Assessment, and Pharmacotherapy Personalization[J]. Diagnostics (Basel), 2020, 10(5): 1-18.
    [2] SCHNACKENBERG L K, THORN D A, BARNETTE D, et al. MALDI imaging mass spectrometry: an emerging tool in neurology[J]. Metab Brain Dis, 2022, 37(1): 105-121. doi: 10.1007/s11011-021-00797-2
    [3] PANG X, GAO S, GA M, et al. Mapping Metabolic Networks in the Brain by Ambient Mass Spectrometry Imaging and Metabolomics[J]. Anal Chem, 2021, 93(17): 6746-6754. doi: 10.1021/acs.analchem.1c00467
    [4] ZHOU Q, FUELOEP A, HOPF C. Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI[J]. Analytical and Bioanalytical Chemistry, 2021, 413(10): 2599-2617. doi: 10.1007/s00216-020-03023-7
    [5] LEE P Y, YEOH Y, OMAR N, et al. Molecular tissue profiling by MALDI imaging: recent progress and applications in cancer research[J]. Crit Rev Clin Lab Sci, 2021, 58(7): 513-529. doi: 10.1080/10408363.2021.1942781
    [6] ZEMAITIS K J, IZYDORCZAK A M, THOMPSON A C, et al. Streamlined Multimodal DESI and MALDI Mass Spectrometry Imaging on a Singular Dual-Source FT-ICR Mass Spectrometer[J]. Metabolites, 2021, 11(4): 1-15.
    [7] MAMUN A, ISLAM A, ETO F, et al. Mass spectrometry-based phospholipid imaging: methods and findings[J]. Expert Rev Proteomics, 2020, 17(11-12): 843-854. doi: 10.1080/14789450.2020.1880897
    [8] HERMANN J, NOELS H, THEELEN W, et al. Sample preparation of formalin-fixed paraffin-embedded tissue sections for MALDI-mass spectrometry imaging[J]. Analytical and Bioanalytical Chemistry, 2020, 412(6): 1263-1275. doi: 10.1007/s00216-019-02296-x
    [9] KERTESZ V, CAHILL J F. Spatially resolved absolute quantitation in thin tissue by mass spectrometry[J]. Anal Bioanal Chem, 2021, 413(10): 2619-2636. doi: 10.1007/s00216-020-02964-3
    [10] SHARIATGORJI M, NILSSON A, FRIDJONSDOTTIR E, et al. Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging[J]. Nat Methods, 2019, 16(10): 1021-1028. doi: 10.1038/s41592-019-0551-3
    [11] UNSIHUAY D, SANCHEZ D M, LASKIN J. Quantitative Mass Spectrometry Imaging of Biological Systems[J]. Annual Review of Physical Chemistry, 2021, 72(1): 307-329. doi: 10.1146/annurev-physchem-061020-053416
    [12] GUO G, PAPANICOLAOU M, DEMARAIS N J, et al. Automated annotation and visualisation of high-resolution spatial proteomic mass spectrometry imaging data using HIT-MAP[J]. Nat Commun, 2021, 12(1): 1-16. doi: 10.1038/s41467-020-20314-w
    [13] WANG H J. Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Lipids in the Ischemic Rat Brain Section: A Practical Approach[J]. Methods Mol Biol, 2021, 2306: 299-311.
    [14] JIANG H, GAO S, HU G, et al. Innovation in drug toxicology: Application of mass spectrometry imaging technology[J]. Toxicology, 2021, 464(153): 1-14.
    [15] WU R, QIN L, CHEN L, et al. Copper adhesive tape attached to the reverse side of a non-conductive glass slide to achieve protein MALDI-imaging in FFPE-tissue sections [J]. 2021, 57(82): 10707-10710.
    [16] ZHANG X, WU C, TAN W. Brain Lipid Dynamics in Amyloid Precursor Protein/Presenilin 1 Mouse Model of Early Alzheimer's Disease by Desorption Electrospray Ionization and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry Imaging Techniques[J]. J Proteome Res, 2021, 20(5): 2643-2650. doi: 10.1021/acs.jproteome.0c01050
    [17] GRECO F, QUERCIOLI L, PUCCI A, et al. Mass Spectrometry Imaging as a Tool to Investigate Region Specific Lipid Alterations in Symptomatic Human Carotid Atherosclerotic Plaques[J]. Metabolites, 2021, 11(250): 1-18.
    [18] DIENEL G A. Stop the rot. Enzyme inactivation at brain harvest prevents artifacts: A guide for preservation of the in vivo concentrations of brain constituents[J]. J Neurochem, 2021, 158(5): 1007-1031. doi: 10.1111/jnc.15293
    [19] DIENEL G A. Metabolomic and Imaging Mass Spectrometric Assays of Labile Brain Metabolites: Critical Importance of Brain Harvest Procedures[J]. Neurochemical Research, 2020, 45(11): 2586-2606. doi: 10.1007/s11064-020-03124-w
    [20] TRUONG J X M, SPOTBEEN X, WHITE J, et al. Removal of optimal cutting temperature (O. C. T. ) compound from embedded tissue for MALDI imaging of lipids[J]. Anal Bioanal Chem, 2021, 413(10): 2695-2708. doi: 10.1007/s00216-020-03128-z
    [21] FLINDERS B, MORRELL J, MARSHALL P S, et al. Monitoring the three-dimensional distribution of endogenous species in the lungs by matrix-assisted laser desorption/ionization mass spectrometry imaging[J]. Rapid Commun Mass Spectrom, 2021, 35(1): 1-20.
    [22] WU R, QIN L, CHEN L, et al. Copper adhesive tape attached to the reverse side of a non-conductive glass slide to achieve protein MALDI-imaging in FFPE-tissue sections[J]. Chem Commun (Camb), 2021, 57(82): 10707-10710. doi: 10.1039/D1CC03629G
    [23] LEE Y R, BRIGGS M T, KULIWABA J S, et al. Gelatin-coated indium tin oxide slides improve human cartilage-bone tissue adherence and N-glycan signal intensity for mass spectrometry imaging[J]. Anal Bioanal Chem, 2021, 413(10): 2675-2682. doi: 10.1007/s00216-020-02986-x
    [24] SUGIURA Y, ZAIMA N, SETOU M, et al. Visualization of acetylcholine distribution in central nervous system tissue sections by tandem imaging mass spectrometry[J]. Anal Bioanal Chem, 2012, 403(7): 1851-1861. doi: 10.1007/s00216-012-5988-5
    [25] HANDLER A M, PEDERSEN G P, NIELSEN K T, et al. Quantitative MALDI mass spectrometry imaging for exploring cutaneous drug delivery of tofacitinib in human skin[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159: 1-10. doi: 10.1016/j.ejpb.2020.12.008
    [26] SAITO T, WATANABE A, NAKANO M, et al. MALDI-TOF mass spectrometry imaging for N-glycans on FFPE tissue sections of mouse NASH liver through Sialic acid Benzylamidation[J]. Glycoconj J, 2021, 38(2): 167-175. doi: 10.1007/s10719-021-09984-w
    [27] RYAN D J, SPRAGGINS J M, CAPRIOLI R M. Protein identification strategies in MALDI imaging mass spectrometry: a brief review[J]. Curr Opin Chem Biol, 2019, 48: 64-72. doi: 10.1016/j.cbpa.2018.10.023
    [28] VU N Q, BUCHBERGER A R, JOHNSON J, et al. Complementary neuropeptide detection in crustacean brain by mass spectrometry imaging using formalin and alternative aqueous tissue washes[J]. Anal Bioanal Chem, 2021, 413(10): 2665-2673. doi: 10.1007/s00216-020-03073-x
    [29] HARRIS A, ROSEBOROUGH A, MOR R, et al. Ganglioside Detection from Formalin-Fixed Human Brain Tissue Utilizing MALDI Imaging Mass Spectrometry[J]. J Am Soc Mass Spectrom, 2020, 31(3): 479-487. doi: 10.1021/jasms.9b00110
    [30] Sun C, Wang F, Wang X, et al. The choice of tissue fixative is a key determinant for mass spectrometry imaging based tumor metabolic reprogramming characterization[J]. Anal Bioanal Chem, 2020, 412(13): 3123-3134. doi: 10.1007/s00216-020-02562-3
    [31] CHEN Y, TANG W, GORDON A, et al. Development of an Integrated Tissue Pretreatment Protocol for Enhanced MALDI MS Imaging of Drug Distribution in the Brain[J]. J Am Soc Mass Spectrom, 2020, 31(5): 1066-1073. doi: 10.1021/jasms.0c00003
    [32] HUO Y, LIU K, LOU X. Strong additive and synergistic effects of polyoxyethylene nonionic surfactant-assisted protein MALDI imaging mass spectrometry[J]. Talanta, 2021, 222: 1-22.
    [33] ZAIKIN V G, BORISOV R S. Options of the Main Derivatization Approaches for Analytical ESI and MALDI Mass Spectrometry[J]. Crit Rev Anal Chem, 2021: 1-81. doi: 10.1080/10408347.2021.1873100
    [34] BEDNARIK A, PREISLER J, BEZDEKOVA D, et al. Ozonization of Tissue Sections for MALDI MS Imaging of Carbon-Carbon Double Bond Positional Isomers of Phospholipids[J]. Anal Chem, 2020, 92(9): 6245-6250. doi: 10.1021/acs.analchem.0c00641
    [35] MERDAS M, LAGARRIGUE M, VANBELLINGEN Q, et al. On-tissue chemical derivatization reagents for matrix-assisted laser desorption/ionization mass spectrometry imaging[J]. J Mass Spectrom, 2021, 56(10): 1-72.
    [36] SHARIATGORJI R, NILSSON A, FRIDJONSDOTTIR E, et al. Spatial visualization of comprehensive brain neurotransmitter systems and neuroactive substances by selective in situ chemical derivatization mass spectrometry imaging[J]. Nat Protoc, 2021, 16(7): 3298-3321. doi: 10.1038/s41596-021-00538-w
    [37] WANG S S, WANG Y J, ZHANG J, et al. Derivatization Strategy for Simultaneous Molecular Imaging of Phospholipids and Low-Abundance Free Fatty Acids in Thyroid Cancer Tissue Sections[J]. Anal Chem, 2019, 91(6): 4070-4076. doi: 10.1021/acs.analchem.8b05680
    [38] CAO Q, WANG Y, CHEN B, et al. Visualization and Identification of Neurotransmitters in Crustacean Brain via Multifaceted Mass Spectrometric Approaches[J]. ACS Chem Neurosci, 2019, 10(3): 1222-1229. doi: 10.1021/acschemneuro.8b00730
    [39] BEDNARIK A, BOELSKER S, SOLTWISCH J, et al. An On-Tissue Paterno-Buchi Reaction for Localization of Carbon-Carbon Double Bonds in Phospholipids and Glycolipids by Matrix-Assisted Laser-Desorption-Ionization Mass-Spectrometry Imaging[J]. Angewandte Chemie-International Edition, 2018, 57(37): 12092-12096. doi: 10.1002/anie.201806635
    [40] TREU A, ROMPP A. Matrix ions as internal standard for high mass accuracy matrix-assisted laser desorption/ionization mass spectrometry imaging[J]. Rapid Commun Mass Spectrom, 2021, 35(16): 1-15.
    [41] CALVANO C D, MONOPOLI A, CATALDI T R I, et al. MALDI matrices for low molecular weight compounds: an endless story[J]. Analytical and Bioanalytical Chemistry, 2018, 410(17): 4015-4038. doi: 10.1007/s00216-018-1014-x
    [42] TOBIAS F, HUMMON A B. Considerations for MALDI-Based Quantitative Mass Spectrometry Imaging Studies[J]. J Proteome Res, 2020, 19(9): 3620-3630. doi: 10.1021/acs.jproteome.0c00443
    [43] HUNTER M, DEMARAIS N J, FAULL R L M, et al. An imaging mass spectrometry atlas of lipids in the human neurologically normal and Huntington's disease caudate nucleus[J]. J Neurochem, 2021, 157(6): 2158-2172. doi: 10.1111/jnc.15325
    [44] WANG J, WANG C, HAN X. Enhanced coverage of lipid analysis and imaging by matrix-assisted laser desorption/ionization mass spectrometry via a strategy with an optimized mixture of matrices[J]. Anal Chim Acta, 2018, 1000: 1-32. doi: 10.1016/j.aca.2017.11.025
    [45] YANG J, NORRIS J L, CAPRIOLI R. Novel vacuum stable ketone-based matrices for high spatial resolution MALDI imaging mass spectrometry[J]. J Mass Spectrom, 2018, 53(10): 1005-1012. doi: 10.1002/jms.4277
    [46] TANG W, GORDON A, WANG F, et al. Hydralazine as a Versatile and Universal Matrix for High-Molecular Coverage and Dual-Polarity Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging[J]. Anal Chem, 2021, 93(26): 9083-9093. doi: 10.1021/acs.analchem.1c00498
    [47] WANG Z, CAI Y, WANG Y, et al. Improved MALDI imaging MS analysis of phospholipids using graphene oxide as new matrix[J]. Sci Rep, 2017, 7: 44466. doi: 10.1038/srep44466
    [48] PENG C N, ZHANG Q, LIU J A, et al. Study on titanium dioxide nanoparticles as MALDI MS matrix for the determination of lipids in the brain[J]. Green Processing and Synthesis, 2021, 10(1): 700-710. doi: 10.1515/gps-2021-0056
    [49] STRNAD S, PRAZIENKOVA V, SYKORA D, et al. The use of 1, 5-diaminonaphthalene for matrix-assisted laser desorption/ionization mass spectrometry imaging of brain in neurodegenerative disorders[J]. Talanta, 2019, 201: 364-372. doi: 10.1016/j.talanta.2019.03.117
    [50] DUFRESNE M, GUNEYSU D, PATTERSON N H, et al. Multimodal detection of GM2 and GM3 lipid species in the brain of mucopolysaccharidosis type II mouse by serial imaging mass spectrometry and immunohistochemistry[J]. Analytical & Bioanalytical Chemistry, 2017, 409(5): 1-9.
    [51] PARK S, LEE C Y. Extraction and Upconcentration of Adsorbates from Precisely Defined Area for Quantitative MALDI Mass Spectrometry Imaging[J]. Methods Mol Biol, 2022, 243: 159-169.
    [52] HUANG X, ZHAN L, SUN J, et al. Utilizing a Mini-Humidifier To Deposit Matrix for MALDI Imaging[J]. Anal Chem, 2018, 90(14): 8309-8313. doi: 10.1021/acs.analchem.8b01714
    [53] O'ROURKE M B, VIENGKHOU B, SMITH C C, et al. Matrix phase fractionation: Investigating the compromise between dynamic range of analyte extraction and spatial resolution in mass spectrometry imaging[J]. Rapid Commun Mass Spectrom, 2021, 35(13): 1-9.
    [54] BIEN T, BESSLER S, DREISEWERD K, et al. Transmission-Mode MALDI Mass Spectrometry Imaging of Single Cells: Optimizing Sample Preparation Protocols[J]. Anal Chem, 2021, 93(10): 4513-4520. doi: 10.1021/acs.analchem.0c04905
    [55] YOSHINAGA K. Development of Analytical Methods and Nutritional Studies Using Synthetic Fatty Acids and Triacylglycerols[J]. J Oleo Sci, 2021, 70(1): 1-9. doi: 10.5650/jos.ess20196
    [56] HAYASHI Y, OHUCHI M, RYU S, et al. A procedure for method development and protein binding ratio as the indicator of sensitivity with anticancer agents on MALDI mass spectrometry imaging[J]. Drug Metab Pharmacokinet, 2021, 38: 1-8.
    [57] STURTEVANT D, AZIZ M, ROMSDAHL T B, et al. In Situ Localization of Plant Lipid Metabolites by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI)[J]. Methods Mol Biol, 2021, 2295: 417-438.
    [58] LI N, NIE H, JIANG L, et al. Recent advances of ambient ionization mass spectrometry imaging in clinical research[J]. J Sep Sci, 2020, 43(15): 3146-3163. doi: 10.1002/jssc.202000273
    [59] GUO L, HU Z, ZHAO C, et al. Data Filtering and Its Prioritization in Pipelines for Spatial Segmentation of Mass Spectrometry Imaging[J]. Anal Chem, 2021, 93(11): 4788-4793. doi: 10.1021/acs.analchem.0c05242
    [60] SIGHINOLFI G, CLARK S, BLANC L, et al. Mass spectrometry imaging of mice brain lipid profile changes over time under high fat diet[J]. Sci Rep, 2021, 11(1): 1-14.
    [61] DESBENOIT N, WALCH A, SPENGLER B, et al. Correlative mass spectrometry imaging, applying time-of-flight secondary ion mass spectrometry and atmospheric pressure matrix-assisted laser desorption/ionization to a single tissue section[J]. Rapid Commun Mass Spectrom, 2018, 32(2): 159-166. doi: 10.1002/rcm.8022
    [62] MARTINEZ-GARDEAZABAL J, GONZALEZ DE SAN ROMAN E, MORENO-RODRIGUEZ M, et al. Lipid mapping of the rat brain for models of disease[J]. Biochimica Et Biophysica Acta-Biomembranes, 2017, 1859(9): 1548-1557. doi: 10.1016/j.bbamem.2017.02.011
    [63] K Wüllems, Zurowietz A , Zurowietz M , et al. Fast visual exploration of mass spectrometry images with interactive dynamic spectral similarity pseudocoloring[J]. Scientific Reports, 2021, 11(1): 4606-4621. doi: 10.1038/s41598-021-84049-4
    [64] KALLBACK P, NILSSON A, SHARIATGORJI M, et al. msIQuant-Quantitation Software for Mass Spectrometry Imaging Enabling Fast Access, Visualization, and Analysis of Large Data Sets[J]. Anal Chem, 2016, 88(8): 4346-4353. doi: 10.1021/acs.analchem.5b04603
    [65] TANAKA Y, HIRATA M, SHINONOME S, et al. Distribution analysis of epertinib in brain metastasis of HER2-positive breast cancer by imaging mass spectrometry and prospect for antitumor activity[J]. Sci Rep, 2018, 8(1): 343-355. doi: 10.1038/s41598-017-18702-2
    [66] TUCK M, BLANC L, TOUTI R, et al. Multimodal Imaging Based on Vibrational Spectroscopies and Mass Spectrometry Imaging Applied to Biological Tissue: A Multiscale and Multiomics Review[J]. Anal Chem, 2021, 93(1): 445-477. doi: 10.1021/acs.analchem.0c04595
    [67] VOS D R N, ELLIS S R, BALLUFF B, et al. Experimental and Data Analysis Considerations for Three-Dimensional Mass Spectrometry Imaging in Biomedical Research[J]. Mol Imaging Biol, 2021, 23(2): 149-159. doi: 10.1007/s11307-020-01541-5
    [68] DUFRESNE M, PATTERSON N H, NORRIS J L, et al. Combining Salt Doping and Matrix Sublimation for High Spatial Resolution MALDI Imaging Mass Spectrometry of Neutral Lipids[J]. Anal Chem, 2019, 91(20): 12928-12934. doi: 10.1021/acs.analchem.9b02974
    [69] BUCHBERGER A R, DELANEY K, JOHNSON J, et al. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights[J]. Anal Chem, 2018, 90(1): 240-265. doi: 10.1021/acs.analchem.7b04733
    [70] HEILES S, KOMPAUER M, MULLER M A, et al. Atmospheric-Pressure MALDI Mass Spectrometry Imaging at 213 nm Laser Wavelength[J]. J Am Soc Mass Spectrom, 2020, 31(2): 326-335. doi: 10.1021/jasms.9b00052
    [71] ZHANG C, ZUKAUSKAITE A, PETRIK I, et al. In situ characterisation of phytohormones from wounded Arabidopsis leaves using desorption electrospray ionisation mass spectrometry imaging[J]. Analyst, 2021, 146(8): 2653-2663. doi: 10.1039/D0AN02118K
    [72] BUCHBERGER A R, VU N Q, JOHNSON J, et al. A Simple and Effective Sample Preparation Strategy for MALDI-MS Imaging of Neuropeptide Changes in the Crustacean Brain Due to Hypoxia and Hypercapnia Stress[J]. J Am Soc Mass Spectrom, 2020, 31(5): 1058-1065. doi: 10.1021/jasms.9b00107
    [73] ALEXANDROV T. Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence[J]. Annual Review of Biomedical Data Science, 2020, 3: 61-87. doi: 10.1146/annurev-biodatasci-011420-031537
    [74] DEL CASTILLO E, SEMENTE L, TORRES S, et al. rMSIKeyIon: An Ion Filtering R Package for Untargeted Analysis of Metabolomic LDI-MS Images[J]. Metabolites, 2019, 162(9): 1-14.
    [75] PORTA SIEGEL T, HAMM G, BUNCH J, et al. Mass Spectrometry Imaging and Integration with Other Imaging Modalities for Greater Molecular Understanding of Biological Tissues[J]. Mol Imaging Biol, 2018, 20(6): 888-901. doi: 10.1007/s11307-018-1267-y
    [76] Robichon K, Sondhauss S, Jordan T W, et al. Localisation of clozapine during experimental autoimmune encephalomyelitis and its impact on dopamine and its receptors[J]. Sci Rep, 2021, 11(1): 2966-2979. doi: 10.1038/s41598-021-82667-6
    [77] HE J, HUANG L, TIAN R, et al. MassImager: A software for interactive and in-depth analysis of mass spectrometry imaging data[J]. Anal Chim Acta, 2018, 1015: 1-37. doi: 10.1016/j.aca.2018.02.041
    [78] SCUPAKOVA K, BALLUFF B, TRESSLER C, et al. Cellular resolution in clinical MALDI mass spectrometry imaging: the latest advancements and current challenges[J]. Clin Chem Lab Med, 2020, 58(6): 914-929. doi: 10.1515/cclm-2019-0858
    [79] BAI H, LINDER K E, MUDDIMAN D C. Three-dimensional (3D) imaging of lipids in skin tissues with infrared matrix-assisted laser desorption electrospray ionization (MALDESI) mass spectrometry[J]. Anal Bioanal Chem, 2021, 413(10): 2793-2801. doi: 10.1007/s00216-020-03105-6
    [80] KALLBACK P, NILSSON A, SHARIATGORJI M, et al. A Space Efficient Direct Access Data Compression Approach for Mass Spectrometry Imaging[J]. Anal Chem, 2018, 90(6): 3676-3682. doi: 10.1021/acs.analchem.7b03188
    [81] VERBEECK N, CAPRIOLI R M, VAN DE PLAS R. Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry[J]. Mass Spectrom Rev, 2020, 39(3): 245-291. doi: 10.1002/mas.21602
    [82] MOHAMMADI S, PARASTAR H. Quantitative analysis of multiple high-resolution mass spectrometry images using chemometric methods: quantitation of chlordecone in mouse liver[J]. Analyst, 2018, 143(10): 2416-2425. doi: 10.1039/C7AN02059G
    [83] MICHNO W, WEHRLI P M, BLENNOW K, et al. Molecular imaging mass spectrometry for probing protein dynamics in neurodegenerative disease pathology[J]. J Neurochem, 2019, 151(4): 488-506. doi: 10.1111/jnc.14559
    [84] SCHULZ S, BECKER M, GROSECLOSE M R, et al. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development[J]. Curr Opin Biotechnol, 2019, 55: 51-59. doi: 10.1016/j.copbio.2018.08.003
    [85] TIAN S, HOU Z, ZUO X, et al. Automatic Registration of the Mass Spectrometry Imaging Data of Sagittal Brain Slices to the Reference Atlas[J]. J Am Soc Mass Spectrom, 2021, 32(7): 1789-1797. doi: 10.1021/jasms.1c00137
    [86] TYLER B J, KASSENBOHMER R, PETERSON R E, et al. Denoising of Mass Spectrometry Images via Inverse Maximum Signal Factors Analysis[J]. Anal Chem, 2022, 94(6): 2835-2843. doi: 10.1021/acs.analchem.1c04564
    [87] VALLIANATOU T, SHARIATGORJI R, NILSSON A, et al. Integration of Mass Spectrometry Imaging and Machine Learning Visualizes Region-Specific Age-Induced and Drug-Target Metabolic Perturbations in the Brain[J]. ACS Chem Neurosci, 2021, 12(10): 1811-1823. doi: 10.1021/acschemneuro.1c00103
    [88] 梁志国, 姜延欢. 人工智能的计量校准[J]. 计量学报, 2021, 42(1): 78-84.
    [89] ZHANG W, CLAESEN M, MOERMAN T, et al. Spatially aware clustering of ion images in mass spectrometry imaging data using deep learning[J]. Anal Bioanal Chem, 2021, 413(10): 2803-2819. doi: 10.1007/s00216-021-03179-w
    [90] HAHM T H, MATSUI T, TANAKA M. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Tissues via the Formation of Reproducible Matrix Crystals by the Fluorescence-Assisted Spraying Method: A Quantification Approach[J]. Anal Chem, 2022, 94(4): 1990-1998. doi: 10.1021/acs.analchem.1c03369
    [91] SAMMOUR D A, MARSCHING C, GEISEL A, et al. Quantitative Mass Spectrometry Imaging Reveals Mutation Status-independent Lack of Imatinib Penetration into Liver Metastases of Gastrointestinal Stromal Tumors[J]. bioRxiv, 2019, 9(1): 10698-10706.
    [92] TAYLOR A J, DEXTER A, BUNCH J. Exploring Ion Suppression in Mass Spectrometry Imaging of a Heterogeneous Tissue[J]. Anal Chem, 2018, 90(9): 5637-5645. doi: 10.1021/acs.analchem.7b05005
    [93] WU Q, LI Y, WANG Y, et al. Quantitative mass spectrometry imaging of amino acids with isomer differentiation in brain tissue via exhaustive liquid microjunction surface sampling-tandem mass tags labeling-ultra performance liquid chromatography-mass spectrometry[J]. J Chromatogr A, 2020, 52(2): 1-11.
    [94] MOROSI L, MATTEO C, MERONI M, et al. Quantitative measurement of pioglitazone in neoplastic and normal tissues by AP-MALDI mass spectrometry imaging[J]. Talanta, 2022, 237: 122918-122930. doi: 10.1016/j.talanta.2021.122918
    [95] WANG L, XING X, ZENG X, et al. Spatially resolved isotope tracing reveals tissue metabolic activity[J]. Nat Methods, 2022, 19(2): 223-230. doi: 10.1038/s41592-021-01378-y
    [96] DEWEZ F, DE PAUW E, HEEREN R M A, et al. Multilabel Per-Pixel Quantitation in Mass Spectrometry Imaging[J]. Anal Chem, 2021, 93(3): 1393-1400. doi: 10.1021/acs.analchem.0c03186
    [97] GRANBORG J R, HANDLER A M, JANFELT C. Mass spectrometry imaging in drug distribution and drug metabolism studies – Principles, applications and perspectives[J]. TrAC Trends in Analytical Chemistry, 2022, 146: 116482-116485. doi: 10.1016/j.trac.2021.116482
    [98] KALLBACK P, VALLIANATOU T, NILSSON A, et al. Cross-validated Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Quantitation Protocol for a Pharmaceutical Drug and Its Drug-Target Effects in the Brain Using Time-of-Flight and Fourier Transform Ion Cyclotron Resonance Analyzers[J]. Anal Chem, 2020, 92(21): 14676-14684. doi: 10.1021/acs.analchem.0c03203
    [99] WU Q, LU H. Quantitative Mass Spectrometry Imaging with Liquid Microjunction Surface Sampling[J]. Methods Mol Biol, 2022, 2437: 181-194.
    [100] ENGEL K M, PRABUTZKI P, LEOPOLD J, et al. A new update of MALDI-TOF mass spectrometry in lipid research[J]. Prog Lipid Res, 2022, 86: 101145-101181. doi: 10.1016/j.plipres.2021.101145
    [101] KIP A M, VALVERDE J M, ALTELAAR M, et al. Combined Quantitative (Phospho)proteomics and Mass Spectrometry Imaging Reveal Temporal and Spatial Protein Changes in Human Intestinal Ischemia-Reperfusion[J]. J Proteome Res, 2022, 21(1): 49-66. doi: 10.1021/acs.jproteome.1c00447
    [102] 易可可, 谢洁, 龚晓云, 等. 液相色谱-串联质谱应用研究进展[J]. 计量科学与技术, 2021, 65(2): 7-15,16.
    [103] WU Q, HUANG Z, WANG Y, et al. Absolute quantitative imaging of sphingolipids in brain tissue by exhaustive liquid microjunction surface sampling-liquid chromatography-mass spectrometry[J]. J Chromatogr A, 2020, 1609: 460436-4643646. doi: 10.1016/j.chroma.2019.460436
    [104] CHEN K, BALUYA D, TOSUN M, et al. Imaging Mass Spectrometry: A New Tool to Assess Molecular Underpinnings of Neurodegeneration[J]. Metabolites, 2019, 35(9): 1-18.
    [105] STENSBALLE A. Data in support of Anti-Abeta antibody treatment with Aducanumab modified the proteome of senile plaques and surrounding tissue and altered disease progression in a transgenic mouse model of Alzheimer's disease [M]. PRIDE, 2021.
    [106] KAYA I, ZETTERBERG H, BLENNOW K, et al. Shedding Light on the Molecular Pathology of Amyloid Plaques in Transgenic Alzheimer's Disease Mice Using Multimodal MALDI Imaging Mass Spectrometry[J]. Acs Chemical Neuroscience, 2018, 9(7): 1802-1817. doi: 10.1021/acschemneuro.8b00121
    [107] GUPTA V B, CHITRANSHI N, DEN HAAN J, et al. Retinal changes in Alzheimer's disease- integrated prospects of imaging, functional and molecular advances[J]. Prog Retin Eye Res, 2021, 82: 100899-100935. doi: 10.1016/j.preteyeres.2020.100899
    [108] TIAN X, XIE B, ZOU Z, et al. Multimodal Imaging of Amyloid Plaques: Fusion of the Single-Probe Mass Spectrometry Image and Fluorescence Microscopy Image[J]. Anal Chem, 2019, 91(20): 12882-12889. doi: 10.1021/acs.analchem.9b02792
    [109] ZHANG Y Y, HAN C, ZHAO Z W. Research Progress of Matrix Assisted Laser Desorption Ionization Mass Spectrometry Imaging of Alzheimer's Disease Brain[J]. Chinese Journal of Analytical Chemistry, 2019, 47(10): 1622-1628.
    [110] KELLEY A R, PERRY G, CASTELLANI R J, et al. Laser-Induced In-Source Decay Applied to the Determination of Amyloid-Beta in Alzheimer's Brains[J]. ACS Chem Neurosci, 2016, 7(3): 261-268. doi: 10.1021/acschemneuro.5b00295
    [111] GONZALEZ DE SAN ROMAN E, LLORENTE-OVEJERO A, MARTINEZ-GARDEAZABAL J, et al. Modulation of Neurolipid Signaling and Specific Lipid Species in the Triple Transgenic Mouse Model of Alzheimer's Disease[J]. Int J Mol Sci, 2021, 22(22): 1-22.
    [112] STRNAD S, PRAZIENKOVA V, HOLUBOVA M, et al. Mass spectrometry imaging of free-floating brain sections detects pathological lipid distribution in a mouse model of Alzheimer's-like pathology[J]. Analyst, 2020, 145(13): 4595-4605. doi: 10.1039/D0AN00592D
    [113] SHOBO A, JAMES N, DAI D, et al. The amyloid-beta1-42-oligomer interacting peptide D-AIP possesses favorable biostability, pharmacokinetics, and brain region distribution[J]. J Biol Chem, 2022, 298(1): 101483-101497. doi: 10.1016/j.jbc.2021.101483
    [114] MALLAH K, ZIBARA K, KERBAJ C, et al. Neurotrauma investigation through spatial omics guided by mass spectrometry imaging: Target identification and clinical applications[J]. Mass Spectrom Rev, 2021, 34: 1-17.
    [115] BARBACCI D C, ROUX A, MULLER L, et al. Mass Spectrometric Imaging of Ceramide Biomarkers Tracks Therapeutic Response in Traumatic Brain Injury[J]. Acs Chemical Neuroscience, 2017, 8(10): 2266-2274. doi: 10.1021/acschemneuro.7b00189
    [116] GAMA SOSA M A, DE GASPERI R, PEREZ GARCIA G S, et al. Low-level blast exposure disrupts gliovascular and neurovascular connections and induces a chronic vascular pathology in rat brain[J]. Acta Neuropathol Commun, 2019, 7(1): 1-20. doi: 10.1186/s40478-018-0656-4
    [117] SOWERS J L, HAWKINS B E, SHAVKUNOV A, et al. Elucidation of Traumatic Brain Injury Pathophysiology through a Longitudinal Proteomic Study and Maldi-Ims[J]. Journal of Neurotrauma, 2018, 35(16): 132-146.
    [118] LI Y, WU Q, HU E, et al. Quantitative Mass Spectrometry Imaging of Metabolomes and Lipidomes for Tracking Changes and Therapeutic Response in Traumatic Brain Injury Surrounding Injured Area at Chronic Phase[J]. ACS Chem Neurosci, 2021, 12(8): 1363-1375. doi: 10.1021/acschemneuro.1c00002
    [119] MCDONALD W S, JONES E E, WOJCIAK J M, et al. Matrix-Assisted Laser Desorption Ionization Mapping of Lysophosphatidic Acid Changes after Traumatic Brain Injury and the Relationship to Cellular Pathology[J]. AMERICAN JOURNAL OF PATHOLOGY, 2018, 188(8): 1779-1793. doi: 10.1016/j.ajpath.2018.05.005
    [120] MALLAH K, QUANICO J, RAFFO-ROMERO A, et al. Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Lipids in Experimental Model of Traumatic Brain Injury Detecting Acylcarnitines as Injury Related Markers[J]. Anal Chem, 2019, 91(18): 11879-11887. doi: 10.1021/acs.analchem.9b02633
    [121] BIESTERVELD B E, PUMIGLIA L, IANCU A, et al. Valproic acid treatment rescues injured tissues after traumatic brain injury[J]. J Trauma Acute Care Surg, 2020, 89(6): 1156-1165. doi: 10.1097/TA.0000000000002918
    [122] MAVROUDAKIS L, STEVENS S L, DUNCAN K D, et al. CpG preconditioning reduces accumulation of lysophosphatidylcholine in ischemic brain tissue after middle cerebral artery occlusion[J]. Anal Bioanal Chem, 2021, 413(10): 2735-2745. doi: 10.1007/s00216-020-02987-w
    [123] TANAKA E, OGAWA Y, FUJII R, et al. Metabolomic analysis and mass spectrometry imaging after neonatal stroke and cell therapies in mouse brains[J]. Sci Rep, 2020, 10(1): 218812-218824.
    [124] CHENG X, YANG Y L, LI W H, et al. Dynamic Alterations of Brain Injury, Functional Recovery, and Metabolites Profile after Cerebral Ischemia/Reperfusion in Rats Contributes to Potential Biomarkers[J]. J Mol Neurosci, 2020, 70(5): 667-676. doi: 10.1007/s12031-019-01474-x
    [125] ZHU T, WANG L, TIAN F, et al. Anti-ischemia/reperfusion injury effects of notoginsenoside R1 on small molecule metabolism in rat brain after ischemic stroke as visualized by MALDI-MS imaging[J]. Biomedicine & pharmacotherapy, 2020, 129: 110470-11481.
    [126] WANG L, ZHU T, XU H B, et al. Effects of notoginseng leaf triterpenes on small molecule metabolism after cerebral ischemia/reperfusion injury assessed using MALDI-MS imaging[J]. Ann Transl Med, 2021, 9(3): 1-12.
    [127] TIAN F, LIU R, FAN C, et al. Effects of Thymoquinone on Small-Molecule Metabolites in a Rat Model of Cerebral Ischemia Reperfusion Injury Assessed using MALDI-MSI[J]. Metabolites, 2020, 10(1): 1-22.
    [128] AJITH A, STHANIKAM Y, BANERJEE S. Chemical analysis of the human brain by imaging mass spectrometry[J]. Analyst, 2021, 146(18): 5451-5473. doi: 10.1039/D1AN01109J
    [129] SEKERA E R, SARASWAT D, ZEMAITIS K J, et al. MALDI Mass Spectrometry Imaging in a Primary Demyelination Model of Murine Spinal Cord[J]. J Am Soc Mass Spectrom, 2020, 31(12): 2462-2468. doi: 10.1021/jasms.0c00187
    [130] BOWMAN A P, BOGIE J F J, HENDRIKS J J A, et al. Evaluation of lipid coverage and high spatial resolution MALDI-imaging capabilities of oversampling combined with laser post-ionisation[J]. Anal Bioanal Chem, 2020, 412(10): 2277-2289. doi: 10.1007/s00216-019-02290-3
    [131] MACCARRONE G, NISCHWITZ S, DEININGER S O, et al. MALDI imaging mass spectrometry analysis-A new approach for protein mapping in multiple sclerosis brain lesions[J]. Journal of chromatography B, Analytical technologies in the biomedical and life sciences, 2017, 1047: 131-140. doi: 10.1016/j.jchromb.2016.07.001
    [132] GRIFFITHS R L, SISLEY E K, LOPEZ-CLAVIJO A F, et al. Native mass spectrometry imaging of intact proteins and protein complexes in thin tissue sections[J]. International Journal of Mass Spectrometry, 2019, 437: 23-29. doi: 10.1016/j.ijms.2017.10.009
    [133] HABENSTEIN J, SCHMITT F, LIESSEM S, et al. Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nadus[J]. Journal of Neurochemistry, 2021, 158(2): 391-412. doi: 10.1111/jnc.15346
    [134] RZAGALINSKI I, HAINZ N, MEIER C, et al. Spatial and molecular changes of mouse brain metabolism in response to immunomodulatory treatment with teriflunomide as visualized by MALDI-MSI[J]. Anal Bioanal Chem, 2019, 411(2): 353-365. doi: 10.1007/s00216-018-1444-5
    [135] HULME H, FRIDJONSDOTTIR E, GUNNARSDOTTIR H, et al. Simultaneous mass spectrometry imaging of multiple neuropeptides in the brain and alterations induced by experimental parkinsonism and L-DOPA therapy[J]. Neurobiol Dis, 2020, 137: 104738-104748. doi: 10.1016/j.nbd.2020.104738
    [136] AGRAWAL I, TRIPATHI P, BISWAS S. Mass spectrometry based protein biomarkers and drug target discovery and clinical diagnosis in Age-Related progressing neurodegenerative diseases[J]. Drug Metab Rev, 2022: 1-15.
    [137] WU H, LIU X, GAO Z Y, et al. Icaritin Provides Neuroprotection in Parkinson's Disease by Attenuating Neuroinflammation, Oxidative Stress, and Energy Deficiency[J]. Antioxidants, 2021, 10(4): 1-17.
    [138] FRIDJONSDOTTIR E, SHARIATGORJI R, NILSSON A, et al. Mass spectrometry imaging identifies abnormally elevated brain l-DOPA levels and extrastriatal monoaminergic dysregulation in l-DOPA-induced dyskinesia[J]. Sci Adv, 2021, 7(2): 1-14.
    [139] WANG Y, TONG Q, MA S R, et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson's disease by regulating gut microbiota[J]. Signal Transduct Target Ther, 2021, 6(1): 1-20. doi: 10.1038/s41392-020-00451-w
    [140] VILLACREZ M, HELLMAN K, ONO T, et al. Evaluation of Drug Exposure and Metabolism in Locust and Zebrafish Brains Using Mass Spectrometry Imaging[J]. ACS Chem Neurosci, 2018, 9(8): 1994-2000. doi: 10.1021/acschemneuro.7b00459
    [141] LIU R Z, FAN C X, ZHANG Z L, et al. Effects of Dl-3-n-butylphthalide on Cerebral Ischemia Infarction in Rat Model by Mass Spectrometry Imaging[J]. Int J Mol Sci, 2017, 18(11): 1-16.
    [142] PAMREDDY A, BAIJNATH S, NAICKER T, et al. Bedaquiline has potential for targeting tuberculosis reservoirs in the central nervous system[J]. RSC ADVANCES, 2018, 22(8): 11902-11907.
    [143] LUPTAKOVA D, VALLIANATOU T, NILSSON A, et al. Neuropharmacokinetic visualization of regional and subregional unbound antipsychotic drug transport across the blood-brain barrier[J]. Mol Psychiatry, 2021, 26(12): 7732-7745. doi: 10.1038/s41380-021-01267-y
    [144] GUO Y, ZOU G, QI K, et al. Simvastatin impairs hippocampal synaptic plasticity and cognitive function in mice[J]. Mol Brain, 2021, 14(1): 1-10. doi: 10.1186/s13041-020-00716-z
    [145] LIU X, LIU R, FU D, et al. Dl-3-n-butylphthalide inhibits neuroinflammation by stimulating foxp3 and Ki-67 in an ischemic stroke model[J]. Aging, 2021, 13(3): 3763-3778. doi: 10.18632/aging.202338
    [146] GOODWIN R J A, TAKATS Z, BUNCH J. A Critical and Concise Review of Mass Spectrometry Applied to Imaging in Drug Discovery[J]. SLAS Discov, 2020, 25(9): 963-976. doi: 10.1177/2472555220941843
    [147] 蒋依芹, 李卓然, 李雨霄, 等. 基于人工神经网络的光学图像标准化显示研究[J]. 计量科学与技术, 2021, 65(2): 63-68,72.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  1216
  • HTML全文浏览量:  441
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-03-08

目录

    /

    返回文章
    返回