留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大尺寸计量中双光梳绝对测距方法的研究进展

刘洋 李建双 赫明钊 曹士英 缪东晶 谢志奇

刘洋,李建双,赫明钊,等. 大尺寸计量中双光梳绝对测距方法的研究进展[J]. 计量科学与技术,2023, 67(4): 18-27 doi: 10.12338/j.issn.2096-9015.2022.0245
引用本文: 刘洋,李建双,赫明钊,等. 大尺寸计量中双光梳绝对测距方法的研究进展[J]. 计量科学与技术,2023, 67(4): 18-27 doi: 10.12338/j.issn.2096-9015.2022.0245
LIU Yang, LI Jianshuang, HE Mingzhao, CAO Shiying, MIAO Dongjing, XIE Zhiqi. Progress in Dual-Comb Absolute Ranging Methods for Large-Scale Metrology[J]. Metrology Science and Technology, 2023, 67(4): 18-27. doi: 10.12338/j.issn.2096-9015.2022.0245
Citation: LIU Yang, LI Jianshuang, HE Mingzhao, CAO Shiying, MIAO Dongjing, XIE Zhiqi. Progress in Dual-Comb Absolute Ranging Methods for Large-Scale Metrology[J]. Metrology Science and Technology, 2023, 67(4): 18-27. doi: 10.12338/j.issn.2096-9015.2022.0245

大尺寸计量中双光梳绝对测距方法的研究进展

doi: 10.12338/j.issn.2096-9015.2022.0245
基金项目: 国家重点研发计划(2021YFF0600305, 2020YFB2010703);中国计量科学研究院基础科研业务费(AKYZD2212, AKY1902)。
详细信息
    作者简介:

    刘洋(1991-),中国计量科学研究院助理研究员,研究方向:绝对长度计量,邮箱:liuyang1@nim.ac.cn

    通讯作者:

    李建双(1966-),中国计量科学研究院研究员,研究方向:大尺寸计量,邮箱:lijiansh@nim.ac.cn

  • 中图分类号: TB921

Progress in Dual-Comb Absolute Ranging Methods for Large-Scale Metrology

  • 摘要: 大尺寸计量中广泛采用增量式激光干涉仪作为量值传递的计量标准,在测量过程中易发生断光影响,严重限制测量灵活性。近年来,以飞秒光学频率梳为光源的高精度绝对测距方法得到了迅猛发展,特别是双光梳异步光学采样绝对测距方法,利用具有微弱重频差的两台飞秒光学频率梳能够实现大量程、高精度和高更新率的绝对距离测量。以大尺寸激光绝对测距和飞秒光学频率梳绝对测距为切入点,详细综述了现阶段大尺寸双光梳绝对测距的研究进展;针对大尺寸计量场景分析了双光梳绝对测距现存的瓶颈,并对此开展了双光梳光源搭建与优化、测距精度优化、测距系统设计和测距性能验证等深入研究,最后对双光梳绝对测距在大尺寸计量中未来的应用方向提出了展望。
  • 图  1  双光梳绝对测距光路结构

    Figure  1.  Optical layout of the dual-comb ranging system

    图  2  双光梳异步光学采样线性探测原理

    Figure  2.  Principle of linear detection via asynchronous optical sampling in a dual-comb system

    图  3  双光梳测距的探测方法与测量盲区示意图

    Figure  3.  Schematic of detection methods and measurement blind zones in a dual-comb system

    图  4  双色双光梳光源系统

    Figure  4.  Schematic of a two-color dual-comb system

    图  5  大尺寸全光纤双光梳绝对测距装置

    Figure  5.  Schematic of an all-fiber, large-scale dual-comb absolute distance measurement system

    图  6  多路绝对测距拓展模块

    Figure  6.  Schematic of the extension module for multi-channel absolute distance measurement

    图  7  大尺寸双光梳异步光学采样绝对测距在线解算软件

    Figure  7.  Online software interface for large-scale asynchronous optical sampling absolute distance measurement

    图  8  软件采用的线性探测的频谱相位法算法流程

    Figure  8.  Flowchart of the algorithm for linear spectral phase detection adopted in the software

    图  9  多路绝对距离比对的测试现场图片

    Figure  9.  Scene of the property test for multiple absolute distance measurements

    图  10  15~60 m范围内5 m步进间隔的两组测量结果

    Figure  10.  Results of two measurement sets at 5-m intervals within a 15 to 60 m range

    表  1  大尺寸绝对长度测量方法的优劣势对比

    Table  1.   Comparison of advantages and disadvantages of different methods for large-scale absolute length measurement

    绝对测距方法优势局限
    脉冲飞行时间法可无合作目标测
    量,应用广泛
    受限脉冲计时精度,时
    间抖动影响明显
    调制波相位法结构紧凑,灵
    活性较好
    受到探测单元的电学带
    宽和测相精度限制
    多波长法量程大,精度高构建逐级合成波长链
    导致测距系统复杂
    调频连续波法动态范围大,可无
    合作目标测量
    光频率扫描非线性将
    影响测长精度
    下载: 导出CSV
  • [1] 秦宜智. 实施《计量发展规划(2021-2035年)》全面开启加快计量发展新征程[J]. 中国计量, 2022(6): 5-9.
    [2] 谭久彬. 超精密测量与高端装备制造质量[J]. 中国工业和信息化, 2020 (6): 18-23.
    [3] 朱美娜. 构建国家现代先进测量体系 助推制造业转型升级[J]. 中国质量技术监督, 2018(11): 50-55, 1.
    [4] Bobroff N. Recent advances in displacement measuring interferometry[J]. Measurement Science and Technology, 1993, 4(9): 907.
    [5] 所睿, 范志军, 李岩, 等. 双频激光干涉仪技术现状与发展[J]. 激光与红外, 2004, (4): 251-253.
    [6] Kim S. W. Combs rule[J]. Nature Photonics, 2009, 3(6): 313-314.
    [7] Newbury N. R. Searching for applications with a fine-tooth comb[J]. Nature Photonics, 2011, 5(4): 186-188.
    [8] Schmitt R, Peterek M, Morse E, et al. Advances in large-scale metrology–review and future trends[J]. CIRP Annals, 2016, 65(2): 643-665.
    [9] 张国雄. 坐标测量技术发展方向[J]. 红外与激光工程, 2008, 37(S1): 1-5.
    [10] Gao W, Kim S, Bosse H, et al. Measurement technologies for precision positioning[J]. CIRP Annals, 2015, 64(2): 773-796.
    [11] Schödel R. Modern Interferometry for Length Metrology[M]. IOP Publishing, 2018.
    [12] 陈千颂, 杨成伟, 潘志文, 等. 激光飞行时间测距关键技术进展[J]. 激光与红外, 2002 (1): 7-10.
    [13] 宋建辉, 袁峰, 丁振良. 脉冲激光测距中高精度时间间隔的测量[J]. 光学精密工程, 2009, 17(5): 1046-1050.
    [14] Fujima I, Iwasaki S, Seta K. High-resolution distance meter using optical intensity modulation at 28 GHz[J]. Measurement Science and Technology, 1998, 9(7): 1049.
    [15] Lay O P, Dubovitsky S, Peters R D, et al. MSTAR: a submicrometer, absolute metrology system[J]. Optics Letters, 2003, 28(11): 890-892.
    [16] Vu T T, Higuchi M, Aketagawa M. Accurate displacement-measuring interferometer with wide range using an I2 frequency-stabilized laser diode based on sinusoidal frequency modulation[J]. Measurement Science and Technology, 2016, 27(10): 105201.
    [17] Zhang S, Yan L, Chen B, et al. Real-time phase delay compensation of PGC demodulation in sinusoidal phase-modulation interferometer for nanometer displacement measurement[J]. Optics Express, 2017, 25(1): 472-485.
    [18] Meiners-Hagen K, Burgarth V, Abou-Zeid A. Profilometry with a multi-wavelength diode laser interferometer[J]. Measurement Science and Technology, 2004, 15(4): 741.
    [19] Stone J A, Stejskal A, Howard L. Absolute interferometry with a 670-nm external cavity diode laser[J]. Applied Optics, 1999, 38(28): 5981-5994.
    [20] Dale J, Hughes B, Lancaster A. J, et al. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells[J]. Optics Express, 2014, 22(20): 24869-24893.
    [21] Prellinger G, Meiners-Hagen K, Pollinger F. Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50 m[J]. Measurement Science and Technology, 2015, 26(8): 084003.
    [22] Yu W, Pfeiffer P, Morsali A, et al. Comb-calibrated frequency sweeping interferometry for absolute distance and vibration measurement[J]. Optics Letters, 2019, 44(20): 5069-5072.
    [23] Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Applied Optics, 2000, 39(30): 5512-5517.
    [24] Ye J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 2004, 29(10): 1153-1155.
    [25] Cui M, Zeitouny M G, Bhattacharya N, et al. High-accuracy long-distance measurements in air with a frequency comb laser[J]. Optics Letters, 2009, 34(13): 1982-1984.
    [26] Wei D, Takahashi S, Takamasu K, et al. Time-of-flight method using multiple pulse train interference as a time recorder[J]. Optics Express, 2011, 19(6): 4881-4889.
    [27] Cui M, Schouten R N, Bhattacharya N, et al. Experimental demonstration of distance measurement with a femtosecond frequency comb laser[J]. Journal of the European Optical Society-Rapid publications, 2008(3): 08003.
    [28] Zhu J G, Cui P F, Guo Y, et al. Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement[J]. Optics Express, 2015, 23(10): 13069-13081.
    [29] Lee J, Kim Y J, Lee K, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photonics, 2010, 4(10): 716-720.
    [30] Wu X J, Zhang J T, Wei H Y, et al. Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb[J]. Review of Scientific Instruments, 2012, 83(7): 073107.
    [31] Chanthawong N, Takahashi S, Takamasu K, et al. A new method for high-accuracy gauge block measurement using 2 GHz repetition mode of a mode-locked fiber laser[J]. Measurement Science and Technology, 2012, 23(5): 054003.
    [32] Joo K. N, Kim S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser[J]. Optics Express, 2006, 14(13): 5954-5960.
    [33] Cui M, Zeitouny M G, Bhattacharya N, et al. Long distance measurement with femtosecond pulses using a dispersive interferometer[J]. Optics Express, 2011, 19(7): 6549-6562.
    [34] Wu H. Z, Cao S. Y, Zhang F M, et al. Spectral interferometry based absolute distance measurement using frequency comb[J]. Acta Physica Sinica, 2015, 64(2): 020601.
    [35] Zhu Z, Wu G. Dual-Comb Ranging[J]. Engineering, 2018, 4(6): 772-778.
    [36] 吴冠豪, 周思宇, 杨越棠, 等. 双光梳测距及其应用[J]. 中国激光, 2021, 48(15): 250-267.
    [37] Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6): 351-356.
    [38] Liu T A, Newbury N R, Coddington I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers[J]. Optics Express, 2011, 19(19): 18501-18509.
    [39] Lee J, Han S, Lee K, et al. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength[J]. Measurement Science and Technology, 2013, 24(4): 045201.
    [40] 王国超, 颜树华, 杨俊, 等. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析[J]. 物理学报, 2013, 62(7): 100-110.
    [41] Wu G. H, Zhou Q, Shen L F, et al. Experimental optimization of the repetition rate difference in dual-comb ranging system[J]. Applied Physics Express, 2014, 7(10): 106602.
    [42] Wu G H, Xiong S L, Ni K, et al. Parameter optimization of a dual-comb ranging system by using a numerical simulation method[J]. Optics Express, 2015, 23(25): 32044-32053.
    [43] Zhang H, Wei H, Wu X, et al. Reliable non-ambiguity range extension with dual-comb simultaneous operation in absolute distance measurements[J]. Measurement Science and Technology, 2014, 25(12): 125201.
    [44] Shi H, Song Y, Liang F, et al. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers[J]. Optics Express, 2015, 23(11): 14057-14069.
    [45] Li Y, Cai Y, Li R, et al. Large-scale absolute distance measurement with dual free-running all-polarization-maintaining femtosecond fiber lasers[J]. Chinese Optics Letters, 2019, 17(9): 091202.
    [46] 纪荣祎, 周维虎, 黎尧, 等. 激光跟踪仪高精度绝对测距系统[J]. 光学精密工程, 2016, 24(10s): 148-155.
    [47] 董登峰, 周维虎, 纪荣祎, 等. 激光跟踪仪精密跟踪系统的设计[J]. 光学精密工程, 2016, 24(2): 309-318.
    [48] 劳达宝, 崔成君, 王国民, 等. 飞秒激光跟踪仪跟踪光路的优化设计与分析[J]. 中国激光, 2019, 46(3): 192-199.
    [49] Lin B, Zhao X, He M, et al. Dual-comb absolute distance measurement based on a dual-wavelength passively mode-locked laser[J]. IEEE Photonics Journal, 2017, 9(6): 1-8.
    [50] 赫明钊, 林百科, 李建双. 基于双波长频率梳的绝对测距系统研究[J]. 计量学报, 2017, 38(S1): 51-55.
    [51] 林百科, 曹士英, 袁小迪, 等. 赫兹相对线宽的双光梳绝对距离系统[J]. 计量科学与技术, 2021(2): 44-48.
    [52] Zhu Z, Xu G, Ni K, et al. Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement[J]. Optics Express, 2018, 26(5): 5747-5757.
    [53] Zhu Z, Ni K, Zhou Q, et al. Two-color phase-stable dual-comb ranging without precise environmental sensing[J]. Optics Express, 2019, 27(4): 4660-4671.
    [54] Zhou S, Lin C, Yang Y, et al. Multi-pulse sampling dual-comb ranging method[J]. Optics Express, 2020, 28(3): 4058-4066.
    [55] Fellinger J, Winkler G, Aldia P C, et al. Simple approach for extending the ambiguity-free range of dual-comb ranging[J]. Optics Letters, 2021, 46(15): 3677-3680.
    [56] Jiang R, Zhou S, Wu G. Aliasing-free dual-comb ranging system based on free-running fiber lasers[J]. Optics Express, 2021, 29(21): 33527-33535.
    [57] 容驷驹. 双飞秒激光频率梳重复频率锁定技术研究[D]. 广州: 广东工业大学, 2022.
    [58] 武腾飞, 韩继博, 白毓, 等. 双光梳绝对距离测量实验研究[J]. 计测技术, 2022, 42(3): 50-55.
    [59] Han S, Kim Y J, Kim S W. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses[J]. Optics Express, 2015, 23(20): 25874-25882.
    [60] Hu D, Wu Z, Cao H, et al. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser[J]. Optics Communications, 2021, 482: 126566.
    [61] Nguyen Q K, Kim S, Han S H, et al. Improved Self-Calibration of a Multilateration System Based on Absolute Distance Measurement[J]. Sensors, 2020, 20(24): 7288.
    [62] Zhou S, Le V, Xiong S, et al. Dual-comb spectroscopy resolved three-degree-of-freedom sensing[J]. Photonics Research, 2021, 9(2): 243-251.
    [63] Liu Y, Xia W, He M, et al. Strategies of precision enhancement for dual-comb time-of-flight distance measurement with nonlinear detection by numerical simulation[C]. SPIE, 2021.
    [64] Liu Y, Xia W, He M, et al. Experimental realization and characterization of a two–color dual–comb system for practical large–scale absolute distance measurements[J]. Optics and Lasers in Engineering, 2022, 151: 106900.
    [65] 夏文泽, 刘洋, 赫明钊, 等. 双光梳非线性异步光学采样测距中关键参数的数值分析[J]. 物理学报, 2021, 70(18): 53-62.
    [66] Liu Y, Xie Z, He M, et al. Preliminary Investigations of Absolute Distance Measurement by the Dual-Comb System with a Fiber Interferometric Scheme[C]. Singapore, 2022.
    [67] 刘洋, 赫明钊, 谢志奇, 等. 一种多轴全光纤双光梳大尺寸绝对测距系统: CN113805189B[P]. 2022-06-17.
    [68] Xie Z, Liu Y, He M, et al. Investigations on the non-ambiguity range extension of dual-comb ranging by repetition range variation[C]. SPIE, 2022.
    [69] Liu Y, Röse A, Prellinger G, et al. Combining Harmonic Laser Beams by Fiber Components for Refractivity–Compensating Two-Color Interferometry[J]. Journal of Lightwave Technology, 2020, 38(7): 1945-1952.
    [70] Liu Y, Li J, Li J, et al. Proof-of-concept study of the virtual optical scale bar by the pulse-to-pulse interferometry[J]. Optics Express, 2022, 30(2): 2063-2077.
    [71] Liu Y, Yang L, Guo Y, et al. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement[J]. Optics and Lasers in Engineering, 2018, 101: 35-43.
    [72] Liu Y, Lin J, Yang L, et al. Construction of traceable absolute distances network for multilateration with a femtosecond pulse laser[J]. Optics Express, 2018, 26(20): 26618-26632.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  917
  • HTML全文浏览量:  581
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 录用日期:  2022-11-15
  • 修回日期:  2022-11-15
  • 网络出版日期:  2022-11-17

目录

    /

    返回文章
    返回