留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子即时检测研究进展

费悦 李建新 王迪 王志栋 吴枭 高运华

费悦,李建新,王迪,等. 分子即时检测研究进展[J]. 计量科学与技术,2023, 67(5): 3-8 doi: 10.12338/j.issn.2096-9015.2022.0280
引用本文: 费悦,李建新,王迪,等. 分子即时检测研究进展[J]. 计量科学与技术,2023, 67(5): 3-8 doi: 10.12338/j.issn.2096-9015.2022.0280
FEI Yue, LI Jianxin, WANG Di, WANG Zhidong, WU Xiao, GAO Yunhua. A Review on the Advancements in Molecular Point-of-Care Tests[J]. Metrology Science and Technology, 2023, 67(5): 3-8. doi: 10.12338/j.issn.2096-9015.2022.0280
Citation: FEI Yue, LI Jianxin, WANG Di, WANG Zhidong, WU Xiao, GAO Yunhua. A Review on the Advancements in Molecular Point-of-Care Tests[J]. Metrology Science and Technology, 2023, 67(5): 3-8. doi: 10.12338/j.issn.2096-9015.2022.0280

分子即时检测研究进展

doi: 10.12338/j.issn.2096-9015.2022.0280
基金项目: 国家市场监督管理总局技术保障专项( 2022YJ13)。
详细信息
    作者简介:

    费悦(1999-),中国计量科学研究院在读研究生,研究方向:生物计量,邮箱:feiyue@nim.ac.cn

    通讯作者:

    高运华(1972-),中国计量科学研究院研究员,研究方向:核酸计量技术及标准,邮箱:gaoyh@nim.ac.cn

  • 中图分类号: TB99

A Review on the Advancements in Molecular Point-of-Care Tests

  • 摘要: 分子即时检测(Point-of-care Test,POCT)是一种快速发展的核酸检验方法,主要基于等温扩增和微流控等技术,具有检验时间短、设备小、操作简单的优点,为“样本进,结果出”的检验需求提供了实现的可能,为新型冠状病毒肺炎等疫情防控和快速筛查提供了有力支撑。分子POCT诊断产品现可用于检测人乳头瘤病毒、人体免疫缺陷病毒、丙型肝炎病毒、淋球菌等病原微生物,具有检测时间短和便携化程度强等特点。但目前该技术还处于产业发展初级阶段,还需要进一步提高分子POCT产品的准确性和一致性,并完善相关质量管理办法和标准,建立标准化验证评价体系。本文综述了基于等温扩增、微流控等原理的分子POCT技术、设备和应用的最新研究进展,并对该技术未来的发展趋势进行了展望。
  • 表  1  等温扩增微流控芯片性能比较

    Table  1.   Comparison of performance across different isothermal amplification microfluidic chips

    原理 优点 缺点 应用
    离心式等温扩
    增微流控芯片
    以离心力为驱动力,通过主轴电机即可驱动多个独立的结构单元,在芯片上对样品分子进行分子诊断[26] 无需外界驱动泵,
    降低芯片复杂程度。
    难以实现高复杂度、多功能性的反应过程,难以实现上百个样品的高通量或多重检验。 新型冠状肺
    炎病毒[27]、人乳头状瘤病毒[11]、大肠杆菌[28]、沙门氏菌[28]等。
    集成式等温扩
    增微流控芯片
    将样本裂解、核酸提取、核酸扩增及分子检验整合于一体
    的微流控芯片[29]
    实现“样本入-结果出”的一
    体化检验,自动化程度高,降
    低环境要求和操作要求。
    芯片上的试剂存储时间有限,
    芯片设计复杂,成本较高,
    不利于推广。
    新型冠状病毒[30]、大肠埃希菌[31]等。
    巢式等温扩增
    微流控芯片
    在微流控芯片上集成多步等温扩增反应,第一步为预扩增,为后续反应提供扩增模板[9] 灵敏度较高、特异性强。 芯片结构设计复杂、
    精确度要求高。
    新型冠状病毒[32]等。
    数字液滴等温扩
    增微流控芯片
    样本以液滴形式存在于双夹板结构的芯片之中,通过控制电压来实现对液滴的搬运、分离、混合等操作,在芯片上实现核酸的裂解、提取、扩增、
    检验等分析操作。
    操作简便、检验时间缩短,实现绝对定量检验,灵敏度高。 系统复杂、检验成本高,
    技术尚未成熟,稳定型和
    重复性有待提高。
    淋球菌[33]、丙型肝炎病毒[34]、人类免疫缺陷病毒[34]等。
    下载: 导出CSV

    表  2  国内外常见分子POCT检验设备

    Table  2.   Overview of common molecular POCT diagnostic devices domestically and internationally

    仪器名称 公司 原理技术 灵敏度 通量
    GeneXpert Dx分子诊断系统 美国Cepheid公司 半巢式qPCR,微流控技术 15.6 CFU/mL(TB) 1,2,4,16,48,80
    Cobas Liat医用PCR检验系统 美国Roche公司 qPCR ,气压式微流控技术 10−3~10−1 TCID50/mL 1
    BioFire FilmArray 平台 法国梅里埃公司 巢式多重PCR分析技术,
    微流控芯片
    102~103 copies/ml 1
    ID NOW快速检验系统 美国雅培公司 切口酶扩增反应技术,
    恒温扩增技术
    102~103 TCID50/mL,
    20 000 copies/mL
    (2019-nCoV)
    1
    UC0102、UC0104、
    UC0108、UC0116 系统
    中国优思达生物技术公司 交叉引物恒温扩增技术 / 2,4,8,16
    EasyNAT平台 中国优思达生物技术公司 交叉引物恒温扩增技术 1 000 copies/mL 2
    iPonatic移动分子诊断系统 中国圣湘生物公司 qPCR,一步法核酸免提取技术 200 copies/mL 1
    Flash20检验系统 中国卡尤迪生物技术公司 qPCR,微流控技术 400 copies/mL 4
    BoxArray 中国万孚倍特生物技术公司 qPCR,微流控技术 / 4
    注:CFU/mL表示菌落形成单位;TCID50/mL 表示半数组织感染剂量;“/”表示无相关数据。
    下载: 导出CSV
  • [1] 涂芸萍, 杨殿龙, 张中平, 等. 基于微流控芯片的等温扩增技术[J]. 生物工程学报, 2022, 38(3): 943-960.
    [2] 余方友, 王冰洁. 便携式病原微生物分子诊断技术应用现状和展望[J]. 中华检验医学杂志, 2021, 44(2): 94-99.
    [3] Avendaño C, Patarroyo M A. Loop-Mediated Isothermal Amplification as Point-of-Care Diagnosis for Neglected Parasitic Infections[J]. Int J Mol Sci, 2020, 21(21): 7981. doi: 10.3390/ijms21217981
    [4] 姜苏, 李一荣. 等温扩增技术的原理及应用[J]. 中华检验医学杂志, 2020, 43(5): 591-596.
    [5] Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Res, 2000, 28(12): E63. doi: 10.1093/nar/28.12.e63
    [6] Daher R K, Stewart G, Boissinot M, et al. Recombinase Polymerase Amplification for Diagnostic Applications[J]. Clin Chem, 2016, 62(7): 947-958. doi: 10.1373/clinchem.2015.245829
    [7] Fang R, Li X, Hu L, et al. Cross-priming amplification for rapid detection of Mycobacterium tuberculosis in sputum specimens[J]. J Clin Microbiol, 2009, 47(3): 845-847. doi: 10.1128/JCM.01528-08
    [8] 张丽月, 王姗姗, 何祯硕, 等. 全球等温扩增技术发展态势研究[J]. 武汉大学学报(医学版), 2023, 44(6): 647-653.
    [9] Tantiamornkul K, Mataradchakul T . Comparison of nested-polymerase chain reaction and loop-mediated isothermal amplification in detection of Cryptosporidium spp and Giardia duodenalis from water sources in Phayao Province, Thailand: K Tantiamornkul, T Mataradchakul[J]. SEAMEO Regional Tropical Medicine and Public Health Network, 2019(1): 13-24.
    [10] Huang W E, Lim B, Hsu C C, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2[J]. Microb Biotechnol, 2020, 13(4): 950-961. doi: 10.1111/1751-7915.13586
    [11] 黄月明, 牟颖, 周骏, 等. 环介导等温扩增联合横向流动试纸条可视化检测HPV16及HPV58方法的建立[J]. 中国病原生物学杂志, 2021, 16(6): 624-629.
    [12] Vanhomwegen J, Kwasiborski A, Diop A, et al. Development and clinical validation of loop-mediated isothermal amplification (LAMP) assay to diagnose high HBV DNA levels in resource-limited settings[J]. Clin Microbiol Infect, 2021, 27(12): 1858. e1859-1858. e1815.
    [13] 邵军军, 周广青, 常惠芸. 环介导等温扩增技术及其在分子诊断中的应用[J]. 实用诊断与治疗杂志, 2007(6): 450-453.
    [14] 梁卉, 李贱成, 徐克前. 新型冠状病毒(SARS-CoV-2)核酸检测技术[J]. 生命的化学, 2021, 41(12): 2588-2597.
    [15] Li J, Macdonald J, Von Stetten F. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification[J]. Analyst, 2018, 144(1): 31-67.
    [16] 刘可欣, 王倩颖, 杨森, 等. 重组酶扩增技术及其在病原检测中的应用[J]. 特产研究, 2022, 44(2): 145-149, 158.
    [17] Sun Y, Yu L, Liu C, et al. One-tube SARS-CoV-2 detection platform based on RT-RPA and CRISPR/Cas12a[J]. J Transl Med, 2021, 19(1): 74. doi: 10.1186/s12967-021-02741-5
    [18] Kersting S, Rausch V, Bier F F, et al. A recombinase polymerase amplification assay for the diagnosis of atypical pneumonia[J]. Anal Biochem, 2018, 550: 54-60. doi: 10.1016/j.ab.2018.04.014
    [19] Munawar M A. Critical insight into recombinase polymerase amplification technology[J]. Expert Rev Mol Diagn, 2022, 22(7): 725-737. doi: 10.1080/14737159.2022.2109964
    [20] 施宁雪, 靳晶豪, 陈孝仁. 重组酶聚合酶扩增技术及其在生命科学领域的应用[J]. 江西农业学报, 2021, 33(10): 62-72.
    [21] 曲中天. 用于分子即时诊断(POCT)的微流控系统研究 [D]. 合肥: 中国科学技术大学, 2021.
    [22] Trinh T N D, Lee N Y. Nucleic acid amplification-based microfluidic approaches for antimicrobial susceptibility testing[J]. Analyst, 2021, 146(10): 3101-3113. doi: 10.1039/D1AN00180A
    [23] Coelho B, Veigas B, Fortunato E, et al. Digital Microfluidics for Nucleic Acid Amplification[J]. Sensors (Basel), 2017, 17(7): 1495. doi: 10.3390/s17071495
    [24] 王符皓. POCT核酸诊断集成微流控系统研究与实现 [D]. 北京: 北京化工大学, 2020.
    [25] 朱灿灿. 病原体核酸一体化并行检测微流控芯片研究 [D]. 合肥: 中国科学技术大学, 2019.
    [26] 曹宁, 周新丽. 离心微流控芯片技术用于核酸等温扩增的研究进展[J]. 工业微生物, 2020, 50(6): 48-55.
    [27] Xiong H, Ye X, Li Y, et al. Rapid Differential Diagnosis of Seven Human Respiratory Coronaviruses Based on Centrifugal Microfluidic Nucleic Acid Assay[J]. Anal Chem, 2020, 92(21): 14297-14302. doi: 10.1021/acs.analchem.0c03364
    [28] 姚延禄, 曹宁, 周新丽. 基于环介导等温扩增的离心式微流控芯片检测3种致病菌[J]. 食品与发酵工业, 2022, 48(5): 255-261.
    [29] 黎柱均. 集成式微流控芯片数字化等温扩增分析用于大肠埃希菌尿路感染快速诊断 [D]. 广州: 广州医科大学, 2020.
    [30] Liu D, Shen H, Zhang Y, et al. A microfluidic-integrated lateral flow recombinase polymerase amplification (MI-IF-RPA) assay for rapid COVID-19 detection[J]. Lab Chip, 2021, 21(10): 2019-2026. doi: 10.1039/D0LC01222J
    [31] Ulep T H, Day A S, Sosnowski K, et al. Interfacial Effect-Based Quantification of Droplet Isothermal Nucleic Acid Amplification for Bacterial Infection[J]. Sci Rep, 2019, 9(1): 9629. doi: 10.1038/s41598-019-46028-8
    [32] Tang Z, Kong N, Zhang X, et al. A materials-science perspective on tackling COVID-19[J]. Nat Rev Mater, 2020, 5(11): 847-860. doi: 10.1038/s41578-020-00247-y
    [33] Rane T D, Chen L, Zec H C, et al. Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP) [J]. Lab Chip, 2015, 15(3): 776-782. doi: 10.1039/C4LC01158A
    [34] Tan Y L, Huang A Q, Tang L J, et al. Multiplexed droplet loop-mediated isothermal amplification with scorpion-shaped probes and fluorescence microscopic counting for digital quantification of virus RNAs[J]. Chem Sci, 2021, 12(24): 8445-8451. doi: 10.1039/D1SC00616A
    [35] Ye X, Li Y, Wang L, et al. All-in-one microfluidic nucleic acid diagnosis system for multiplex detection of sexually transmitted pathogens directly from genitourinary secretions[J]. Talanta, 2021, 221: 121462. doi: 10.1016/j.talanta.2020.121462
    [36] 黄恩奇. 集成式微流控芯片PCR阵列用于快速检测多重呼吸道感染病原 [D]. 广州: 广州医科大学, 2021.
    [37] Boutin C-A, Grandjean-Lapierre S, Gagnon S, et al. Comparison of SARS-CoV-2 detection from combined nasopharyngeal/oropharyngeal swab samples by a laboratory-developed real-time RT-PCR test and the Roche SARS-CoV-2 assay on a cobas 8800 instrument[J]. Journal of clinical virology: The official publication of the Pan American Society for Clinical Virology, 2020, 132: 104615. doi: 10.1016/j.jcv.2020.104615
    [38] Dong L, Zhou J, Niu C, et al. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR[J]. Talanta, 2021, 224: 121726. doi: 10.1016/j.talanta.2020.121726
    [39] Niu C, Dong L, Gao Y, et al. Quantitative analysis of RNA by HPLC and evaluation of RT-dPCR for coronavirus RNA quantification[J]. Talanta, 2021, 228: 122227. doi: 10.1016/j.talanta.2021.122227
  • 加载中
表(2)
计量
  • 文章访问数:  816
  • HTML全文浏览量:  188
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-21
  • 录用日期:  2022-12-28
  • 修回日期:  2023-06-28
  • 网络出版日期:  2023-07-03
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回