Advances in Measurement Methods for Molecular Weights of Cellulose Materials
-
摘要: 纤维素是地球上储量最大的天然高分子,具有可再生、可完全生物降解、生物相容等诸多优异性质,在生产生活中有着广泛应用。分子量参数是影响纤维素材料力学性能、流变性能和结晶行为等各种性质的关键参数,对其进行准确测量对于纤维素材料的设计、加工和应用具有重要意义。概述了纤维素材料结构特点,介绍了分子量参数对纤维素材料性能的影响,总结了现有的纤维素材料分子量参数测量方法的原理及发展现状,重点介绍了基于新型溶剂体系的先进测量方法,并对纤维素通用化、标准化测量方法的建立提出了展望。Abstract: Cellulose, being the most abundant natural polymer on Earth, boasts numerous superior properties such as renewability, complete biodegradability, and biocompatibility, thus finding extensive application in various aspects of production and daily life. The molecular weight parameters critically influence a range of properties of cellulose materials, including mechanical properties, rheological properties, and crystallization behaviors. Accurate measurement of these parameters is vital for the design, processing, and application of cellulose materials. This paper reviews the structural characteristics of cellulose, discusses the influence of molecular weight parameters on cellulose material properties, and summarizes the principles and current status of existing methods for measuring these parameters in cellulose materials. Emphasis is placed on advanced measurement methods based on novel solvent systems, and the future prospects of establishing a universal, standardized method for cellulose measurement are presented.
-
Key words:
- metrology /
- cellulose /
- molecular weight /
- molecular weight distribution /
- measurement method /
- standard method
-
表 1 粘度法中以铜乙二胺为溶剂的测量纤维素分子量的Mark-Houwink方程[20]
Table 1. Mark-Houwink equations used to measure the molecular weight of cellulose with copper ethylenediamine (CED) as the solvent in the viscosity method[20]
测量方法 Mark-Houwink方程 ASTM D1795* DP = 190[η] SCAN C15:62 DPn0.905 = 0.75[η] ASTM D423-99* DP = 133[η] SCAN CM15:99 [η] = 0.42DPv (DP < 950)
[η] = 2.28DPv0.76 (DP > 950)ASTM D1795-96 [η] = 1.7DP0.8 DIN 54270 DPw0.83 = [η]/0.016 文献方法 DPv0.90 = 1.65[η] 文献方法 [η] = 2.45DPv0.70 表 2 粘度法中以其它体系为溶剂的用以测量纤维素分子量的Mark-Houwink方程[21]
Table 2. Mark-Houwink equations used to measure the molecular weight of cellulose with other solvent systems in the viscosity method[21]
溶剂体系 Mark-Houwink方程 适用的分子量范围 DMAc/LiCl [η] = 1.278 × 10−4Mw0.83 12.5×104~70.0×104 6 wt %氢氧化钠/4 wt %脲 [η] = 2.45 × 10−2Mw0.815 3.2 × 104~12.9 × 104 4.6 wt %氢氧化锂/15 wt %脲 [η] = 3.72 × 10−2Mw0.77 2.7 × 104~4.12 × 105 TBAH/DMSO [η] = 5.09 × 10−4Mh1.21 3.2 × 104~9.72 × 104 多聚甲醛/DMSO [η] = 3.01 × DP0.81 6.9 × 104~1.1 × 105 BmimAc/DMSO (1:1) [η] = 1.8 × 10−4Mw0.83 3.5 × 104~2.2 × 105 BmimAc/DMSO/DMAc (1:1:8) [η] = 2.04 × 10−4Mw0.75 4.5 × 104~1.8 × 106 -
[1] BROWN R M. The biosynthesis of cellulose[J]. Journal of Macromolecular Science-pure and Applied Chemistry, 1996, A33(10): 1345-1373. [2] LEHRHOFER A F, GOTO T, KAWADA T, et al. The in vitro synthesis of cellulose-a mini-review[J]. Carbohydrate Polymers, 2022, 285: 1-10. [3] PANG B, JIANG G, ZHOU J, et al. Molecular-scale design of cellulose-based functional materials for flexible electronic devices[J]. Advanced Electronic Materials, 2021, 7(2): 1-18. [4] KULASINSKI K, KETEN S, CHURAKOV S V, et al. A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose[J]. Cellulose, 2014, 21(3): 1103-1116. [5] GAO Q, SHEN X, LU X. Regenerated bacterial cellulose fibers prepared by the NMMO center dot H2O process[J]. Carbohydrate Polymers, 2011, 83(3): 1253-1256. [6] BJURHAGER I, HALONEN H, LINDFORS E L, et al. State of degradation in archeological oak from the 17th century vasa ship: Substantial strength loss correlates with reduction in (holo)cellulose molecular weight[J]. Biomacromolecules, 2012, 13(8): 2521-2527. [7] YOO M K, REZA M S, KIM I M, et al. Physical properties and fibrillation tendency of regenerated cellulose fiber dry jet-wet spun from high-molecular weight cotton linter pulp/nmmo solution[J]. Fibers and Polymers, 2015, 16(8): 1618-1628. [8] MUENSTER L, FOJTU M, CAPAKOVA Z, et al. Selectively oxidized cellulose with adjustable molecular weight for controlled release of platinum anticancer drugs[J]. Biomacromolecules, 2019, 20(4): 1623-1634. [9] ROSTAMITABAR M, SEIDE G, JOCKENHOEVEL S, et al. Effect of cellulose characteristics on the properties of the wet-spun aerogel fibers[J]. Applied Sciences-Basel, 2021, 11(4): 1-16. [10] MICHUD A, HUMMEL M, SIXTA H. Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dry-jet wet spinning[J]. Polymer, 2015, 75: 1-9. [11] 李海峰, 王军, 史乃捷. 纳米纤维素灰分及无机元素测定国际比对结果分析[J]. 计量科学与技术, 2020, 12: 32-36. [12] 王超, 赵集贤, 王会. 农作物秸秆计量检测技术[J]. 农业工程, 2015, 5(S1): 66-68. [13] SHAHRIARI-KHALAJI M, HU G Q, CHEN L, et al. Functionalization of aminoalkylsilane-grafted bacterial nanocellulose with ZNO-NPS-doped pullulan electrospun nanofibers for multifunctional wound dressing[J]. ACS Biomaterials Science & Engineering, 2021, 7(8): 3933-3946. [14] HUSEMANN E, Weber O H. Bestimmung des molekulargewichtes von cellulosen nach einer endgruppenmethode[J]. Naturwissenschaften, 1942, 30: 280–281. [15] EINFELDT L, GUNTHER W, KLEMM D, et al. Peracetylated cellulose: end group modification and structural analysis by means of 1H-NMR spectroscopy[J]. Cellulose, 2005, 12: 15–24. [16] IMMERGUT E H, RANBY B G, MARK H F. Recent work on molecular weight of cellulose[J]. Journal of Industrial and Engineering Chemistry, 1953, 45, 2483–2490. [17] SCHWEIZER E. Ueber das unterschwefelsaure kupferoxyd-ammoniak und die ammoniakbasischen metallsalze überhaupt[J]. Journal fur Praktische Chemie, 1856, 67: 430–444. [18] OH S Y, YOO D I, SHIN Y, et al. Preparation of regenerated cellulose fiber via carbonation. I. Carbonation and dissolution in an aqueous naoh solution[J]. Fibers and Polymers, 2002, 3(1): 1-7. [19] ZHANG L N, ZHOU D C, CHENG S Y. Studies on cellulose/alginate miscibility in cadoxen by viscometry[J]. European Polymer Journal, 1998, 34(3-4): 381-385. [20] ZHOU Y, ZHANG X, ZHANG J, et al. Molecular weight characterization of cellulose using ionic liquids[J]. Polymer Testing, 2021, 93: 1-11. [21] ZHOU Y, CHENG Y, MI Q, et al. Confronting the challenge of cellulose molecular weight measurement: An accurate, rapid, and universal method with ionic liquid as an additive[J]. Analytical Chemistry, 2022, 94(13): 5432-5440. [22] ZHOU J P, ZHANG L N, CAI J. Behavior of cellulose in naoh/urea aqueous solution characterized by light scattering and viscometry[J]. Journal Of Polymer Science Part B-polymer Physics, 2004, 42(2): 347-353. [23] BU D, HU X, YANG Z, et al. Elucidation of the relationship between intrinsic viscosity and molecular weight of cellulose dissolved in tetra-n-butyl ammonium hydroxide/dimethyl sulfoxide[J]. Polymers, 2019, 11(10): 1605-1619. [24] SEGER B, BURCHARD W. Structure of cellulose in cuoxam[J]. Macromolecular Symposia, 1994, 83: 291-310. [25] KAMIDE K, SAITO M. Light scattering and viscometric study of cellulose in aqueous lithium hydroxide[J]. Polymer Journal, 1986, 18, 569–579. [26] DRECHSLER U, RADOSTA S, VORWERG W. Characterization of cellulose in solvent mixtures with n-methylmorpholine-n-oxide by static light scattering[J]. Macromolecular Chemistry and Physics, 2000, 201(15): 2023-2030. [27] REIN D M, KHALFIN R, SZEKELY N, et al. True molecular solutions of natural cellulose in the binary ionic liquid-containing solvent mixtures[J]. Carbohydrate Polymers, 2014, 112: 125-133. [28] ZHOU Y, ZHANG X, YIN D, et al. The solution state and dissolution process of cellulose in ionic-liquid-based solvents with different hydrogen-bonding basicity and microstructures[J]. Green Chemistry, 2022, 24(9): 3824-3833. [29] BIKOVA T, TREIMANIS A. Problems of the mmd analysis of cellulose by sec using dma/licl: A review[J]. Carbohydrate Polymers, 2002, 48(1): 23-28. [30] SJOHOLM E, GUSTAFSSON K, PETTERSSON B, et al. Characterization of the cellulosic residues from lithium chloride n, n-dimethylacetamide dissolution of softwood kraft pulp[J]. Carbohydrate Polymers, 1997, 32(1): 57-63. [31] SJOHOLM E, GUSTAFSSON K, ERIKSSON B, et al. Aggregation of cellulose in lithium chloride/n, n-dimethylacetamide[J]. Carbohydrate Polymers, 2000, 41(2): 153-161. [32] STRLIC M, KOLAR J. Size exclusion chromatography of cellulose in licl/n, n-dimethylacetamide[J]. Journal Of Biochemical and Biophysical Methods, 2003, 56(1-3): 265-279. [33] WESTERMARK U, GUSTAFSSON K. Molecular-size distribution of wood polymers in birch kraft pulps[J]. Holzforschung, 1994, 48: 146-150. [34] POTTHAST A, RADOSTA S, SAAKE B, et al. Comparison testing of methods for gel permeation chromatography of cellulose: Coming closer to a standard protocol[J]. Cellulose, 2015, 22(3): 1591-1613. [35] VITZ J, YEVLAMPIEVA N P, RJUMTSEV E, et al. Cellulose molecular properties in 1-alkyl-3-methylimidazolium-based ionic liquid mixtures with pyridine[J]. Carbohydrate Polymers, 2010, 82(4): 1046-1053. [36] HIROSAWA K, FUJII K, HASHIMOTO K, et al. Solvated structure of cellulose in a phosphonate-based ionic liquid[J]. Macromolecules, 2017, 50(17): 6509-6517. [37] SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al. Ionic liquids: New solvents for non-derivitized cellulose dissolution[J]. Abstracts of Papers of the American Chemical Society, 2002, 224: U622. [38] FUKAYA Y, TSUKAMOTO A, KURODA K, et al. High performance “ionic liquid” chromatography[J]. Chemical Communications, 2011, 47(7): 1994-1996. [39] ENGEL P, HEIN L, SPIESS A C. Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis[J]. Biotechnology for Biofuels, 2012, 5: 215. [40] EVANS R, WEARNE R H, WALLIS A F A. Molecular-weight distribution of cellulose as its tricarbanilate by high-performance size exclusion chromatography[J]. Journal Of Applied Polymer Science, 1989, 37(12): 3291-3303. [41] HENNIGES U, KLOSER E, PATEL A, et al. Studies on dmso-containing carbanilation mixtures: Chemistry, oxidations and cellulose integrity[J]. Cellulose, 2007, 14(5): 497-511. [42] KUMAR R, HU F, HUBBELL C A, et al. Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass[J]. Bioresource Technology, 2013, 130: 372-381. [43] PAWCENIS D, THOMAS J L, LOJEWSKI T, et al. Towards determination of absolute molar mass of cellulose polymer by size exclusion chromatography with mulitple angle laser light scattering detection[J]. Journal Of Chromatography A, 2015, 1409: 53-59. [44] BENOIT H, HOLTZER A M, DOTY P. An experimental study of polydispersity by light scattering[J]. Journal of Physical Chemistry, 1954, 58(8): 635-640. [45] ZUGENMAIER P. Characterization and physical properties of cellulose[J]. Macromolecular Symposia, 2004, 208: 81-166. [46] SCHULZ L, SEGER B, BURCHARD W. Structures of cellulose in solution[J]. Macromolecular Chemistry and Physics, 2000, 201(15): 2008-2022. [47] BURCHARD W. Solubility and solution structure of cellulose derivatives[J]. Cellulose, 2003, 10(3): 213-225. [48] XIE D H, LI X H, FANG X L, et al. Laser light scattering study on aggregation of cellulose diacetate in acetone[J]. Chinese Journal of Chemical Physics, 2014, 27(3): 256-258. [49] BERTHOLD F, GUSTAFSSON K, BERGGREN R, et al. Dissolution of softwood kraft pulps by direct derivatization in lithium chloride/n, n-dimethylacetamide[J]. Journal Of Applied Polymer Science, 2004, 94(2): 424-431. [50] BILLES E, ONWUKAMIKE K N, COMA V, et al. Cellulose oligomers production and separation for the synthesis of new fully bio-based amphiphilic compounds[J]. Carbohydrate Polymers, 2016, 154: 121-128. [51] ZHOU Y, ZHANG X, CHENG Y, et al. Super-rapid and highly-efficient esterification of cellulose to achieve an accurate chromatographic analysis of its molecular weight[J]. Carbohydrate Polymers, 2022, 286.