留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维素材料分子量测量方法研究进展

周彦 祁欣 王梅玲 张艾蕊 任丹华 王向楠 王海

周彦,祁欣,王梅玲,等. 纤维素材料分子量测量方法研究进展[J]. 计量科学与技术,2023, 67(4): 46-56 doi: 10.12338/j.issn.2096-9015.2022.0285
引用本文: 周彦,祁欣,王梅玲,等. 纤维素材料分子量测量方法研究进展[J]. 计量科学与技术,2023, 67(4): 46-56 doi: 10.12338/j.issn.2096-9015.2022.0285
ZHOU Yan, QI Xin, WANG Meiling, ZHANG Airui, REN Danhua, WANG Xiangnan, WANG Hai. Advances in Measurement Methods for Molecular Weights of Cellulose Materials[J]. Metrology Science and Technology, 2023, 67(4): 46-56. doi: 10.12338/j.issn.2096-9015.2022.0285
Citation: ZHOU Yan, QI Xin, WANG Meiling, ZHANG Airui, REN Danhua, WANG Xiangnan, WANG Hai. Advances in Measurement Methods for Molecular Weights of Cellulose Materials[J]. Metrology Science and Technology, 2023, 67(4): 46-56. doi: 10.12338/j.issn.2096-9015.2022.0285

纤维素材料分子量测量方法研究进展

doi: 10.12338/j.issn.2096-9015.2022.0285
基金项目: 中国计量科学研究院博士后课题项目(BH2209);中央级公益性科研院所基本科研业务费专项资金项目(AKYZZ2331)。
详细信息
    作者简介:

    周彦(1994-),中国计量科学研究院助理研究员,研究方向:高分子计量,邮箱:zhouyan@nim.ac.cn

    通讯作者:

    王海(1973-),中国计量科学研究院研究员,研究方向:物理化学计量,邮箱:wanghai@nim.ac.cn

  • 中图分类号: TB99

Advances in Measurement Methods for Molecular Weights of Cellulose Materials

  • 摘要: 纤维素是地球上储量最大的天然高分子,具有可再生、可完全生物降解、生物相容等诸多优异性质,在生产生活中有着广泛应用。分子量参数是影响纤维素材料力学性能、流变性能和结晶行为等各种性质的关键参数,对其进行准确测量对于纤维素材料的设计、加工和应用具有重要意义。概述了纤维素材料结构特点,介绍了分子量参数对纤维素材料性能的影响,总结了现有的纤维素材料分子量参数测量方法的原理及发展现状,重点介绍了基于新型溶剂体系的先进测量方法,并对纤维素通用化、标准化测量方法的建立提出了展望。
  • 图  1  纤维素的结构

    Figure  1.  The structure of cellulose

    图  2  纤维素的分子量对瓦萨橡木力学性能的影响[6]

    Figure  2.  The effect of the molecular weight of cellulose on the mechanical properties of Vasa oak[6]

    图  3  纤维素材料的广泛应用[13]

    Figure  3.  Wide applications of cellulose materials[13]

    图  4  过乙酰化低分子量纤维素的1H-NMR谱及相应的1D-TOCSY NMR谱图[15]

    Figure  4.  1H-NMR spectrum of peracetylated cellulose with low molecular weight and the [15]

    图  5  纤维素样品在NMMO/H2O/DETA中的Zimm图[26]

    Figure  5.  Zimm plot of the cellulose sample in NMMO/H2O/DETA[26]

    图  6  四个实验室将纸浆1~6直接溶解在DMAc/LiCl后测定的摩尔质量分布的结果比较[34]

    Figure  6.  Comparison of molar mass distributions of pulps 1-6 after direct dissolution in DMAc/LiCl across four laboratories[34]

    图  7  基于离子液体及其共溶剂体系的纤维素分子量GPC方法

    Figure  7.  GPC method for determining cellulose molecular weight based on ionic liquids and their co-solvent systems

    图  8  纤维素苯甲酸酯用于GPC方法以测定纤维素分子量[51]

    Figure  8.  Cellulose benzoates used in GPC methods to measure cellulose molecular weight[51]

    表  1  粘度法中以铜乙二胺为溶剂的测量纤维素分子量的Mark-Houwink方程[20]

    Table  1.   Mark-Houwink equations used to measure the molecular weight of cellulose with copper ethylenediamine (CED) as the solvent in the viscosity method[20]

    测量方法Mark-Houwink方程
    ASTM D1795*DP = 190[η]
    SCAN C15:62DPn0.905 = 0.75[η]
    ASTM D423-99*DP = 133[η]
    SCAN CM15:99[η] = 0.42DPv (DP < 950)
    [η] = 2.28DPv0.76 (DP > 950)
    ASTM D1795-96[η] = 1.7DP0.8
    DIN 54270DPw0.83 = [η]/0.016
    文献方法DPv0.90 = 1.65[η]
    文献方法[η] = 2.45DPv0.70
    下载: 导出CSV

    表  2  粘度法中以其它体系为溶剂的用以测量纤维素分子量的Mark-Houwink方程[21]

    Table  2.   Mark-Houwink equations used to measure the molecular weight of cellulose with other solvent systems in the viscosity method[21]

    溶剂体系 Mark-Houwink方程 适用的分子量范围
    DMAc/LiCl [η] = 1.278 × 10−4Mw0.83 12.5×104~70.0×104
    6 wt %氢氧化钠/4 wt %脲 [η] = 2.45 × 10−2Mw0.815 3.2 × 104~12.9 × 104
    4.6 wt %氢氧化锂/15 wt %脲 [η] = 3.72 × 10−2Mw0.77 2.7 × 104~4.12 × 105
    TBAH/DMSO [η] = 5.09 × 10−4Mh1.21 3.2 × 104~9.72 × 104
    多聚甲醛/DMSO [η] = 3.01 × DP0.81 6.9 × 104~1.1 × 105
    BmimAc/DMSO (1:1) [η] = 1.8 × 10−4Mw0.83 3.5 × 104~2.2 × 105
    BmimAc/DMSO/DMAc (1:1:8) [η] = 2.04 × 10−4Mw0.75 4.5 × 104~1.8 × 106
    下载: 导出CSV
  • [1] BROWN R M. The biosynthesis of cellulose[J]. Journal of Macromolecular Science-pure and Applied Chemistry, 1996, A33(10): 1345-1373.
    [2] LEHRHOFER A F, GOTO T, KAWADA T, et al. The in vitro synthesis of cellulose-a mini-review[J]. Carbohydrate Polymers, 2022, 285: 1-10.
    [3] PANG B, JIANG G, ZHOU J, et al. Molecular-scale design of cellulose-based functional materials for flexible electronic devices[J]. Advanced Electronic Materials, 2021, 7(2): 1-18.
    [4] KULASINSKI K, KETEN S, CHURAKOV S V, et al. A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose[J]. Cellulose, 2014, 21(3): 1103-1116.
    [5] GAO Q, SHEN X, LU X. Regenerated bacterial cellulose fibers prepared by the NMMO center dot H2O process[J]. Carbohydrate Polymers, 2011, 83(3): 1253-1256.
    [6] BJURHAGER I, HALONEN H, LINDFORS E L, et al. State of degradation in archeological oak from the 17th century vasa ship: Substantial strength loss correlates with reduction in (holo)cellulose molecular weight[J]. Biomacromolecules, 2012, 13(8): 2521-2527.
    [7] YOO M K, REZA M S, KIM I M, et al. Physical properties and fibrillation tendency of regenerated cellulose fiber dry jet-wet spun from high-molecular weight cotton linter pulp/nmmo solution[J]. Fibers and Polymers, 2015, 16(8): 1618-1628.
    [8] MUENSTER L, FOJTU M, CAPAKOVA Z, et al. Selectively oxidized cellulose with adjustable molecular weight for controlled release of platinum anticancer drugs[J]. Biomacromolecules, 2019, 20(4): 1623-1634.
    [9] ROSTAMITABAR M, SEIDE G, JOCKENHOEVEL S, et al. Effect of cellulose characteristics on the properties of the wet-spun aerogel fibers[J]. Applied Sciences-Basel, 2021, 11(4): 1-16.
    [10] MICHUD A, HUMMEL M, SIXTA H. Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dry-jet wet spinning[J]. Polymer, 2015, 75: 1-9.
    [11] 李海峰, 王军, 史乃捷. 纳米纤维素灰分及无机元素测定国际比对结果分析[J]. 计量科学与技术, 2020, 12: 32-36.
    [12] 王超, 赵集贤, 王会. 农作物秸秆计量检测技术[J]. 农业工程, 2015, 5(S1): 66-68.
    [13] SHAHRIARI-KHALAJI M, HU G Q, CHEN L, et al. Functionalization of aminoalkylsilane-grafted bacterial nanocellulose with ZNO-NPS-doped pullulan electrospun nanofibers for multifunctional wound dressing[J]. ACS Biomaterials Science & Engineering, 2021, 7(8): 3933-3946.
    [14] HUSEMANN E, Weber O H. Bestimmung des molekulargewichtes von cellulosen nach einer endgruppenmethode[J]. Naturwissenschaften, 1942, 30: 280–281.
    [15] EINFELDT L, GUNTHER W, KLEMM D, et al. Peracetylated cellulose: end group modification and structural analysis by means of 1H-NMR spectroscopy[J]. Cellulose, 2005, 12: 15–24.
    [16] IMMERGUT E H, RANBY B G, MARK H F. Recent work on molecular weight of cellulose[J]. Journal of Industrial and Engineering Chemistry, 1953, 45, 2483–2490.
    [17] SCHWEIZER E. Ueber das unterschwefelsaure kupferoxyd-ammoniak und die ammoniakbasischen metallsalze überhaupt[J]. Journal fur Praktische Chemie, 1856, 67: 430–444.
    [18] OH S Y, YOO D I, SHIN Y, et al. Preparation of regenerated cellulose fiber via carbonation. I. Carbonation and dissolution in an aqueous naoh solution[J]. Fibers and Polymers, 2002, 3(1): 1-7.
    [19] ZHANG L N, ZHOU D C, CHENG S Y. Studies on cellulose/alginate miscibility in cadoxen by viscometry[J]. European Polymer Journal, 1998, 34(3-4): 381-385.
    [20] ZHOU Y, ZHANG X, ZHANG J, et al. Molecular weight characterization of cellulose using ionic liquids[J]. Polymer Testing, 2021, 93: 1-11.
    [21] ZHOU Y, CHENG Y, MI Q, et al. Confronting the challenge of cellulose molecular weight measurement: An accurate, rapid, and universal method with ionic liquid as an additive[J]. Analytical Chemistry, 2022, 94(13): 5432-5440.
    [22] ZHOU J P, ZHANG L N, CAI J. Behavior of cellulose in naoh/urea aqueous solution characterized by light scattering and viscometry[J]. Journal Of Polymer Science Part B-polymer Physics, 2004, 42(2): 347-353.
    [23] BU D, HU X, YANG Z, et al. Elucidation of the relationship between intrinsic viscosity and molecular weight of cellulose dissolved in tetra-n-butyl ammonium hydroxide/dimethyl sulfoxide[J]. Polymers, 2019, 11(10): 1605-1619.
    [24] SEGER B, BURCHARD W. Structure of cellulose in cuoxam[J]. Macromolecular Symposia, 1994, 83: 291-310.
    [25] KAMIDE K, SAITO M. Light scattering and viscometric study of cellulose in aqueous lithium hydroxide[J]. Polymer Journal, 1986, 18, 569–579.
    [26] DRECHSLER U, RADOSTA S, VORWERG W. Characterization of cellulose in solvent mixtures with n-methylmorpholine-n-oxide by static light scattering[J]. Macromolecular Chemistry and Physics, 2000, 201(15): 2023-2030.
    [27] REIN D M, KHALFIN R, SZEKELY N, et al. True molecular solutions of natural cellulose in the binary ionic liquid-containing solvent mixtures[J]. Carbohydrate Polymers, 2014, 112: 125-133.
    [28] ZHOU Y, ZHANG X, YIN D, et al. The solution state and dissolution process of cellulose in ionic-liquid-based solvents with different hydrogen-bonding basicity and microstructures[J]. Green Chemistry, 2022, 24(9): 3824-3833.
    [29] BIKOVA T, TREIMANIS A. Problems of the mmd analysis of cellulose by sec using dma/licl: A review[J]. Carbohydrate Polymers, 2002, 48(1): 23-28.
    [30] SJOHOLM E, GUSTAFSSON K, PETTERSSON B, et al. Characterization of the cellulosic residues from lithium chloride n, n-dimethylacetamide dissolution of softwood kraft pulp[J]. Carbohydrate Polymers, 1997, 32(1): 57-63.
    [31] SJOHOLM E, GUSTAFSSON K, ERIKSSON B, et al. Aggregation of cellulose in lithium chloride/n, n-dimethylacetamide[J]. Carbohydrate Polymers, 2000, 41(2): 153-161.
    [32] STRLIC M, KOLAR J. Size exclusion chromatography of cellulose in licl/n, n-dimethylacetamide[J]. Journal Of Biochemical and Biophysical Methods, 2003, 56(1-3): 265-279.
    [33] WESTERMARK U, GUSTAFSSON K. Molecular-size distribution of wood polymers in birch kraft pulps[J]. Holzforschung, 1994, 48: 146-150.
    [34] POTTHAST A, RADOSTA S, SAAKE B, et al. Comparison testing of methods for gel permeation chromatography of cellulose: Coming closer to a standard protocol[J]. Cellulose, 2015, 22(3): 1591-1613.
    [35] VITZ J, YEVLAMPIEVA N P, RJUMTSEV E, et al. Cellulose molecular properties in 1-alkyl-3-methylimidazolium-based ionic liquid mixtures with pyridine[J]. Carbohydrate Polymers, 2010, 82(4): 1046-1053.
    [36] HIROSAWA K, FUJII K, HASHIMOTO K, et al. Solvated structure of cellulose in a phosphonate-based ionic liquid[J]. Macromolecules, 2017, 50(17): 6509-6517.
    [37] SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al. Ionic liquids: New solvents for non-derivitized cellulose dissolution[J]. Abstracts of Papers of the American Chemical Society, 2002, 224: U622.
    [38] FUKAYA Y, TSUKAMOTO A, KURODA K, et al. High performance “ionic liquid” chromatography[J]. Chemical Communications, 2011, 47(7): 1994-1996.
    [39] ENGEL P, HEIN L, SPIESS A C. Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis[J]. Biotechnology for Biofuels, 2012, 5: 215.
    [40] EVANS R, WEARNE R H, WALLIS A F A. Molecular-weight distribution of cellulose as its tricarbanilate by high-performance size exclusion chromatography[J]. Journal Of Applied Polymer Science, 1989, 37(12): 3291-3303.
    [41] HENNIGES U, KLOSER E, PATEL A, et al. Studies on dmso-containing carbanilation mixtures: Chemistry, oxidations and cellulose integrity[J]. Cellulose, 2007, 14(5): 497-511.
    [42] KUMAR R, HU F, HUBBELL C A, et al. Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass[J]. Bioresource Technology, 2013, 130: 372-381.
    [43] PAWCENIS D, THOMAS J L, LOJEWSKI T, et al. Towards determination of absolute molar mass of cellulose polymer by size exclusion chromatography with mulitple angle laser light scattering detection[J]. Journal Of Chromatography A, 2015, 1409: 53-59.
    [44] BENOIT H, HOLTZER A M, DOTY P. An experimental study of polydispersity by light scattering[J]. Journal of Physical Chemistry, 1954, 58(8): 635-640.
    [45] ZUGENMAIER P. Characterization and physical properties of cellulose[J]. Macromolecular Symposia, 2004, 208: 81-166.
    [46] SCHULZ L, SEGER B, BURCHARD W. Structures of cellulose in solution[J]. Macromolecular Chemistry and Physics, 2000, 201(15): 2008-2022.
    [47] BURCHARD W. Solubility and solution structure of cellulose derivatives[J]. Cellulose, 2003, 10(3): 213-225.
    [48] XIE D H, LI X H, FANG X L, et al. Laser light scattering study on aggregation of cellulose diacetate in acetone[J]. Chinese Journal of Chemical Physics, 2014, 27(3): 256-258.
    [49] BERTHOLD F, GUSTAFSSON K, BERGGREN R, et al. Dissolution of softwood kraft pulps by direct derivatization in lithium chloride/n, n-dimethylacetamide[J]. Journal Of Applied Polymer Science, 2004, 94(2): 424-431.
    [50] BILLES E, ONWUKAMIKE K N, COMA V, et al. Cellulose oligomers production and separation for the synthesis of new fully bio-based amphiphilic compounds[J]. Carbohydrate Polymers, 2016, 154: 121-128.
    [51] ZHOU Y, ZHANG X, CHENG Y, et al. Super-rapid and highly-efficient esterification of cellulose to achieve an accurate chromatographic analysis of its molecular weight[J]. Carbohydrate Polymers, 2022, 286.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  159
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 录用日期:  2022-12-28
  • 修回日期:  2023-05-10
  • 网络出版日期:  2023-06-29
  • 刊出日期:  2023-04-18

目录

    /

    返回文章
    返回