留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属有机框架材料在肿瘤标志物筛查中的研究进展

路欣 胡亚琳 屈子裕 沈丽悦 董嘉晖 谢洁 彭涛

路欣,胡亚琳,屈子裕,等. 金属有机框架材料在肿瘤标志物筛查中的研究进展[J]. 计量科学与技术,2023, 67(4): 37-45, 10 doi: 10.12338/j.issn.2096-9015.2022.0287
引用本文: 路欣,胡亚琳,屈子裕,等. 金属有机框架材料在肿瘤标志物筛查中的研究进展[J]. 计量科学与技术,2023, 67(4): 37-45, 10 doi: 10.12338/j.issn.2096-9015.2022.0287
LU Xin, HU Yalin, QU Ziyu, SHEN Liyue, DONG Jiahui, XIE Jie, PENG Tao. Research Progress of Metal Organic Frameworks in Tumor Marker[J]. Metrology Science and Technology, 2023, 67(4): 37-45, 10. doi: 10.12338/j.issn.2096-9015.2022.0287
Citation: LU Xin, HU Yalin, QU Ziyu, SHEN Liyue, DONG Jiahui, XIE Jie, PENG Tao. Research Progress of Metal Organic Frameworks in Tumor Marker[J]. Metrology Science and Technology, 2023, 67(4): 37-45, 10. doi: 10.12338/j.issn.2096-9015.2022.0287

金属有机框架材料在肿瘤标志物筛查中的研究进展

doi: 10.12338/j.issn.2096-9015.2022.0287
基金项目: 国家重点研发计划项目(2022YFF0608402);中央公益类科研机构基础研究经费(AKYZD2111-2)。
详细信息
    作者简介:

    路欣(1999-),中国计量科学研究院在读研究生,研究方向:基于纳米材料的免疫快速检测技术,邮箱:13331218159@163.com

    通讯作者:

    彭涛(1990-),中国计量科学研究院副研究员,研究方向:免疫检测技术与生物计量,邮箱:pengtao@nim.ac.cn

  • 中图分类号: TB99

Research Progress of Metal Organic Frameworks in Tumor Marker

  • 摘要: 癌症隐匿性强、发展速度快的特点,给患者疾病治疗造成极大的影响。检测癌症发生与发展中产生的肿瘤标志物对癌症早期诊断、改善预后及降低癌症死亡率具有重大的临床意义。但是,肿瘤标志物的特异度和敏感度不足,单一的肿瘤标志物检测导致误诊或漏诊的可能性增加,也无法提供对特定肿瘤类型的鉴别诊断;肿瘤标志物的检测方法较为复杂,耗时长、成本高,限制了其在临床中的应用。此外,通常人体中肿瘤标志物的含量较低、基质成分复杂,对检测技术的灵敏度和准确度提出了挑战。近年来,金属有机框架(MOFs)材料凭借其独特且优异的物理化学性能,在生物传感器的开发与肿瘤标志物的检测中得到广泛应用。简要综述了MOFs材料的结构、命名方法和功能,并对比了每类MOFs材料的固有特性、优缺点,以及在肿瘤标志物筛查中的应用研究进展,梳理总结了目前存在的问题并提出发展建议,以期为肿瘤标志物的高灵敏新型检测方法开发提供参考。
  • 图  1  基于Fe-MOFs的适配体传感器检测CEA[30]

    Figure  1.  Aptasensor based on Fe-MOFs for CEA detection[30]

    图  2  基于Zn-MOFs的电化学免疫传感器检测肺癌标志物NSE[42]

    Figure  2.  Electrochemical immunosensor based on Zn-MOFs for NSE detection[42]

    图  3  基于Zr-MOFs的电化学免疫传感器检测CEA[46]

    Figure  3.  Electrochemical immunosensor based on Zr-MOFs for CEA detection[46]

    图  4  基于La(III)-MOF的“三明治”荧光传感器检测MicroRNA-155[60]

    Figure  4.  "Sandwich"-type fluorescent sensor based on La(III)-MOF for MicroRNA-155 detection[60]

    表  1  不同金属MOFs材料对比

    Table  1.   Comparison of different metal MOFs materials

    类别 优点 缺点 适用检测方法 检测肿瘤标志物种类
    Fe-MOFs 表面易于功能化修饰、吸附封装能力强、氧化还原活性 酸碱稳定性差 电化学传感、免疫层析、
    适配体传感
    胚胎性抗原类、糖抗原类、
    蛋白质类、酶类
    Zn-MOFs 比表面积大、富集发光团 水不稳定、电催化性能差 电化学发光传感、
    光电化学传感
    蛋白质类、酶类、糖抗原类
    Zr-MOFs 热/化学稳定性、磷酸基团亲和性、信号放大 光催化性能差 适配体传感、电化学传感 胚胎性抗原类、糖抗原类、
    蛋白质类、酶类
    Cu-MOFs 催化/电化学性能、孔道结构 水不稳定、热不稳定 电化学传感 胚胎性抗原类、蛋白质类
    Co-MOFs 热/化学稳定性、高负载能力、活性位点多 酸不稳定、电催化性能差 电化学传感 蛋白质类、激素类、酶类
    Ln-MOFs 晶体结构、光学性能出色 光致发光效率低、稳定性差 荧光、电化学发光传感 蛋白质类、胚胎性抗原类
    CD-MOFs 生物相容性好、安全性高 水不稳定 电化学发光传感 蛋白质类、酶类
    下载: 导出CSV
  • [1] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
    [2] SOKOLL L J, CHAN D W. Chapter 44 - Tumor markers [M]. Academic Press, 2020: 779-793.
    [3] DUFFY M J. Tumor markers in clinical practice: A review focusing on common solid cancers [J]. Medical Principles and Practice, 2013, 22(1): 4-11.
    [4] SHI L, SHAO J, JING X, et al. Autoluminescence-Free Dual Tumor Marker Biosensing by Persistent Luminescence Nanostructures [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 686-694.
    [5] 张亚杰, 姬爱国. 乳腺癌病理诊断中免疫组织化学检测意义分析 [J]. 系统医学, 2021, 6(23): 40-43.
    [6] JEONG S, PARK M-J, SONG W, et al. Current immunoassay methods and their applications to clinically used biomarkers of breast cancer [J]. Clinical Biochemistry, 2020, 78: 43-57.
    [7] ZONG C, WU J, WANG C, et al. Chemiluminescence Imaging Immunoassay of Multiple Tumor Markers for Cancer Screening [J]. Analytical Chemistry, 2012, 84(5): 2410-2415.
    [8] YIN S, MA Z. Electrochemical immunoassay for tumor markers based on hydrogels [J]. Expert Rev Mol Diagn, 2018, 18(5): 457-465.
    [9] LIU L, HAO Y, DENG D, et al. Nanomaterials-Based Colorimetric Immunoassays [J]. Nanomaterials (Basel), 2019, 9(3): 316-347.
    [10] TAZAWA H, SHIGEYASU K, NOMA K, et al. Tumor-targeted fluorescence labeling systems for cancer diagnosis and treatment [J]. Cancer Sci, 2022, 113(6): 1919-1929.
    [11] YAGHI O M, LI G, LI H. Selective binding and removal of guests in a microporous metal–organic framework [J]. Nature, 1995, 378(6558): 703-706.
    [12] JAMES S L. Metal-organic frameworks [J]. Chem Soc Rev, 2003, 32(5): 276-288.
    [13] 孟格. 过渡金属基纳米材料的设计合成及其在能源储存和转化中的应用 [D]. 北京: 北京化工大学, 2018.
    [14] 李建惠, 兰天昊, 陈杨, 等. MOF复合材料在气体吸附分离中的研究进展 [J]. 化工学报, 2021, 72(1): 167-179.
    [15] 刘震震. 金属有机骨架(Cu-MOF)催化NH_3-SCR反应去除NO的研究 [D]. 大连: 大连理工大学, 2016.
    [16] 汪碧如. MOF纳米复合材料的制备及其在电化学发光生物传感中的应用 [D]. 武汉: 华中农业大学, 2018.
    [17] 沈宏. 核壳型MOF用于细胞内pH和酶的逐步响应成像 [D]. 南京: 南京大学, 2018.
    [18] 陈玉平, 武鹤松, 陆欢, 等. 家蚕丝素蛋白诱导金属-有机骨架材料(MOF)构建核-壳结构的pH响应性抗癌药物载体[C]. 镇江: 中国蚕学会第十届青年学术研讨会, 2019.
    [19] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks [J]. Science, 2013, 341(6149): 1230444.
    [20] WANG Y, YAN J, WEN N, et al. Metal-organic frameworks for stimuli-responsive drug delivery [J]. Biomaterials, 2020, 230: 119619.
    [21] 韩蕊. 铁基MOFs复合材料在化学发光适配体传感器中的应用 [D]. 济南: 济南大学, 2021.
    [22] GHANBARI T, ABNISA F, WAN DAUD W M A. A review on production of metal organic frameworks (MOF) for CO2 adsorption [J]. Science of The Total Environment, 2020, 707: 135090.
    [23] EVANS J D, GARAI B, REINSCH H, et al. Metal–organic frameworks in Germany: From synthesis to function [J]. Coordination Chemistry Reviews, 2019, 380: 378-418.
    [24] BHARDWAJ N, BHARDWAJ S K, MEHTA J, et al. MOF-Bacteriophage Biosensor for Highly Sensitive and Specific Detection of Staphylococcus aureus [J]. ACS Appl Mater Interfaces, 2017, 9(39): 33589-33598.
    [25] 程绍娟. 金属有机骨架配合物MOF-5的合成及其储氢性能研究 [D]. 太原: 太原理工大学, 2007.
    [26] 许兰兰, 王松, 刘玉霞, 等. 微波法合成金属-有机骨架材料研究应用进展 [J]. 化工新型材料, 2019, 47(4): 1-5.
    [27] WEN T, QUAN G, NIU B, et al. Versatile Nanoscale Metal-Organic Frameworks (nMOFs): An Emerging 3D Nanoplatform for Drug Delivery and Therapeutic Applications [J]. Small, 2021, 17(8): e2005064.
    [28] WANG H S. Metal–organic frameworks for biosensing and bioimaging applications [J]. Coordination Chemistry Reviews, 2017, 349: 139-155.
    [29] JOSEPH J, IFTEKHAR S, SRIVASTAVA V, et al. Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity [J]. Chemosphere, 2021, 284: 131171.
    [30] LI J, LIU L, AI Y, et al. Self-Polymerized Dopamine-Decorated Au NPs and Coordinated with Fe-MOF as a Dual Binding Sites and Dual Signal-Amplifying Electrochemical Aptasensor for the Detection of CEA [J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5500-5510.
    [31] CHEN R, CHEN X, ZHOU Y, et al. "Three-in-One" Multifunctional Nanohybrids with Colorimetric Magnetic Catalytic Activities to Enhance Immunochromatographic Diagnosis [J]. ACS Nano, 2022, 16(2): 3351-3361.
    [32] SHU Y, YE Q, DAI T, et al. Encapsulation of Luminescent Guests to Construct Luminescent Metal–Organic Frameworks for Chemical Sensing [J]. ACS Sensors, 2021, 6(3): 641-658.
    [33] ZHANG X, LI G, WU D, et al. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy [J]. Biosensors and Bioelectronics, 2019, 137: 178-198.
    [34] LI X, LI X, LI D, et al. Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by cascade primer exchange reaction and MOF@Pt@MOF nanozyme [J]. Biosensors and Bioelectronics, 2020, 168: 112554.
    [35] WANG Z, JIANG X, YUAN R, et al. N-(aminobutyl)-N-(ethylisoluminol) functionalized Fe-based metal-organic frameworks with intrinsic mimic peroxidase activity for sensitive electrochemiluminescence mucin1 determination [J]. Biosensors and Bioelectronics, 2018, 121: 250-256.
    [36] LI C, LI Y, ZHANG Y, et al. Signal-enhanced electrochemiluminescence strategy using iron-based metal-organic frameworks modified with carboxylated Ru(II) complexes for neuron-specific enolase detection [J]. Biosensors and Bioelectronics, 2022, 215: 114605.
    [37] WANG M, HU M, LI Z, et al. Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells [J]. Biosensors and Bioelectronics, 2019, 142: 111536.
    [38] LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature, 1999, 402(6759): 276-279.
    [39] ZHOU N, SU F, GUO C, et al. Two-dimensional oriented growth of Zn-MOF-on-Zr-MOF architecture: A highly sensitive and selective platform for detecting cancer markers [J]. Biosensors and Bioelectronics, 2019, 123: 51-58.
    [40] BAHARI D, BABAMIRI B, MORADI K, et al. Graphdiyne nanosheet as a novel sensing platform for self-enhanced electrochemiluminescence of MOF enriched ruthenium (II) in the presence of dual co-reactants for detection of tumor marker [J]. Biosensors and Bioelectronics, 2022, 195: 113657.
    [41] MO G, HE X, QIN D, et al. A potential-resolved electrochemiluminescence resonance energy transfer strategy for the simultaneous detection of neuron-specific enolase and the cytokeratin 19 fragment [J]. Analyst, 2021, 146(4): 1334-1339.
    [42] MA E, WANG P, YANG Q, et al. Electrochemical Immunosensors for Sensitive Detection of Neuron-Specific Enolase Based on Small-Size Trimetallic Au@Pd^Pt Nanocubes Functionalized on Ultrathin MnO(2) Nanosheets as Signal Labels [J]. ACS Biomater Sci Eng, 2020, 6(3): 1418-1427.
    [43] WEI Q, WANG C, ZHOU X, et al. Ionic liquid and spatially confined gold nanoparticles enhanced photoelectrochemical response of zinc-metal organic frameworks and immunosensing squamous cell carcinoma antigen [J]. Biosensors and Bioelectronics, 2019, 142: 111540.
    [44] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability [J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851.
    [45] 韩易潼, 刘民, 李克艳, 等. 高稳定性金属有机骨架UiO-66的合成与应用 [J]. 应用化学, 2016, 33(4): 367-378.
    [46] BAO T, FU R, WEN W, et al. Target-Driven Cascade-Amplified Release of Loads from DNA-Gated Metal–Organic Frameworks for Electrochemical Detection of Cancer Biomarker [J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2087-2094.
    [47] XIONG X, ZHANG Y, WANG Y, et al. One-step electrochemiluminescence immunoassay for breast cancer biomarker CA 15-3 based on Ru(bpy)62+-coated UiO-66-NH2 metal-organic framework [J]. Sensors and Actuators B: Chemical, 2019, 297: 126812.
    [48] WU Y, HAN J, XUE P, et al. Nano metal–organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells [J]. Nanoscale, 2015, 7(5): 1753-1759.
    [49] WEI Y P, ZHANG Y W, MAO C J. A silver nanoparticle-assisted signal amplification electrochemiluminescence biosensor for highly sensitive detection of mucin 1 [J]. J Mater Chem B, 2020, 8(12): 2471-2475.
    [50] HUANG X, HE Z, GUO D, et al. "Three-in-one" Nanohybrids as Synergistic Nanoquenchers to Enhance No-Wash Fluorescence Biosensors for Ratiometric Detection of Cancer Biomarkers [J]. Theranostics, 2018, 8(13): 3461-3473.
    [51] BANERJEE A, SINGH U, ARAVINDAN V, et al. Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries [J]. Nano Energy, 2013, 2(6): 1158-1163.
    [52] HATAMI Z, JALALI F, AMOUZADEH TABRIZI M, et al. Application of metal-organic framework as redox probe in an electrochemical aptasensor for sensitive detection of MUC1 [J]. Biosensors and Bioelectronics, 2019, 141: 111433.
    [53] ZHOU L, YANG L, WANG C, et al. Copper doped terbium metal organic framework as emitter for sensitive electrochemiluminescence detection of CYFRA 21-1 [J]. Talanta, 2022, 238: 123047.
    [54] XIE J, CHENG D, LI P, et al. Au/Metal–Organic Framework Nanocapsules for Electrochemical Determination of Glutathione [J]. ACS Applied Nano Materials, 2021, 4(5): 4853-4862.
    [55] HAN W, HUANG X, LU G, et al. Research Progresses in the Preparation of Co-based Catalyst Derived from Co-MOFs and Application in the Catalytic Oxidation Reaction [J]. Catalysis Surveys from Asia, 2019, 23(2): 64-89.
    [56] DAI L, LI Y, WANG Y, et al. A prostate-specific antigen electrochemical immunosensor based on Pd NPs functionalized electroactive Co-MOF signal amplification strategy [J]. Biosensors and Bioelectronics, 2019, 132: 97-104.
    [57] XU W, QIN Z, HAO Y, et al. A signal-decreased electrochemical immunosensor for the sensitive detection of LAG-3 protein based on a hollow nanobox-MOFs/AuPt alloy [J]. Biosensors and Bioelectronics, 2018, 113: 148-156.
    [58] ZHANG Y, LI N, XU Y, et al. An ultrasensitive dual-signal aptasensor based on functionalized Sb@ZIF-67 nanocomposites for simultaneously detect multiple biomarkers [J]. Biosensors and Bioelectronics, 2022, 214: 114508.
    [59] WANG S, ZHAO Y, WANG M, et al. Enhancing Luminol Electrochemiluminescence by Combined Use of Cobalt-Based Metal Organic Frameworks and Silver Nanoparticles and Its Application in Ultrasensitive Detection of Cardiac Troponin I [J]. Analytical Chemistry, 2019, 91(4): 3048-3054.
    [60] AFZALINIA A, MIRZAEE M. Ultrasensitive Fluorescent miRNA Biosensor Based on a "Sandwich" Oligonucleotide Hybridization and Fluorescence Resonance Energy Transfer Process Using an Ln(III)-MOF and Ag Nanoparticles for Early Cancer Diagnosis: Application of Central Composite Design [J]. ACS Appl Mater Interfaces, 2020, 12(14): 16076-16087.
    [61] 陆洪军, 杨小宁, 沙靖全, 等. β-环糊精金属有机骨架材料的合成及对阿奇霉素的包合研究 [J]. 哈尔滨理工大学学报, 2015, 20(4): 35-40.
    [62] WANG Y, LI Y, ZHUANG X, et al. Ru(bpy)32+ encapsulated cyclodextrin based metal organic framework with improved biocompatibility for sensitive electrochemiluminescence detection of CYFRA21-1 in cell [J]. Biosensors and Bioelectronics, 2021, 190: 113371.
    [63] MA H, LI X, YAN T, et al. Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb (II) metal-organic framework [J]. Biosensors and Bioelectronics, 2016, 79: 379-385.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  138
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 录用日期:  2022-12-26
  • 修回日期:  2022-12-23
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-04-18

目录

    /

    返回文章
    返回