Research on a High Sensitivity Force Sensing Device of the Joule Balance
-
摘要: 高灵敏度力值测量是能量天平实现高精度千克复现研究的关键,现有横梁天平测力法与商用质量比较器测力在能量天平力值测量中会引入额外误差项。针对该问题,提出了一种基于多柔性铰链的高灵敏度力传感装置设计方法,该方法通过多柔性铰链实现力值与机构形变间的转换,然后利用激光干涉仪测量机构形变,实现高灵敏度力值测量,通过理论与有限元仿真分析对装置灵敏度和模态进行了仿真分析,该设计方法可实现灵敏度达8.13 N/m的力值传感。此项研究对下一代能量天平设计与千克复现研究有重要意义。Abstract: Highly sensitive force measurement is a crucial aspect in the research of high precision kilogram realization using a Joule balance. Current force measurement methods involving beam balances and commercial mass comparators introduce additional errors in the Joule balance force measurements. In response to this challenge, we propose a design method for a high-sensitivity force sensing device based on multiple flexure hinges. This method uses multiple flexure hinges to translate force into structural deformation, which is then measured using a laser interferometer, enabling highly sensitive force measurements. We have carried out theoretical and finite element simulation analyses to simulate the sensitivity and modal performance of the device. This method can achieve a force sensing sensitivity of up to 8.13 N/m. Our research carries significant implications for the design of next-generation Joule balances and the advancement of kilogram realization studies.
-
Key words:
- metrology /
- joule balance /
- kilogram realization /
- force measurement /
- flexure hinge /
- finite element simulation
-
表 1 高灵敏力传感机构模态分析结果
Table 1. Modal analysis results of the high-sensitivity force sensor
模态阶数 1 2 3 4 5 6 频率/Hz 0.7 13.5 25.3 61.2 74.2 107.9 -
[1] PETER J M, DAVID B N, BARRY N T, et al. Data and analysis for the CODATA 2017 special fundamental constants adjustment[J]. Metrologia, 2018, 55(1): 125-132. [2] STOCK M, BARAT P, PINOT P, et al. A comparison of future realizations of the kilogram[J]. Metrologia, 2018, 55(1): 1-7. [3] KNOPF D, WIEDENHöFER T, LEHRMANN K, et al. A quantum of action on a scale? Dissemination of the quantum based kilogram[J]. Metrologia, 2019, 56(2): 024003. [4] LIEBISCH T C, STENGER J, ULLRICH J. Understanding the revised SI: Background, consequences, and perspectives[J]. Annalen der Physik, 2019, 531(5): 1800339. [5] 段宇宁, 刘旭红. 漫谈国际单位制变革[J]. 计量技术, 2019(5): 3-7. [6] 张钟华, 李世松. 质量量子标准研究的新进展. 仪器仪表学报, 2013, 34(9): 1921-1926. [7] 尹瑞多, 郭晓伟, 肖尧, 等. 用于动态力值分析的质量块加速度分布研究[J]. 计量科学与技术, 2021, 65(12): 7-11. [8] PAVESE F. The New SI and the CODATA recommended values of the fundamental constants 2017 [J]. Physics, 2018, 53(6): 151203668. [9] 李正坤, 白洋, 许金鑫, 等. 中国计量院在千克重新定义方面的工作和贡献[J]. 计量技术, 2019(5): 28-33. [10] 白洋, 鲁云峰, 廖福剑, 等. 能量天平激光干涉测量系统闲区长度测量方法研究[J]. 计量科学与技术, 2022, 66(4): 34-39. [11] Li Z, Bai Y, Xu J, et al. The upgrade of NIM-2 joule balance since 2017[J]. Metrologia, 2020, 57(5): 055007. [12] XU J, ZHANG Z, LI Z, et al. A determination of the Planck constant by the generalized joule balance method with a permanent-magnet system at NIM[J]. Metrologia, 2016, 53(1): 86-97. [13] LI Z, ZHANG Z, LU Y, et al. The first determination of the Planck constant with the joule balance NIM-2[J]. Metrologia, 2017, 54(5): 763-774. [14] STOCK M, CONCEIÇÃO P, Fang H, et al. Report on the CCM key comparison of kilogram realizations CCM. M-K8. 2019[J]. Metrologia, 2020, 57(1A): 07030. [15] LI Z, ZHANG Z, LU Y, et al. The design and construction of the joule balance NIM-2[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(6): 1329-1336. [16] LI Z, BAI Y, XU J, et al. The improvements of the NIM-2 joule balance[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 2208-2214. [17] HADDAD D, SEIFERT F, CHAO L S, et al. Invited Article: A precise instrument to determine the Planck constant, and the future kilogram[J]. Review of entific Instruments, 2016, 87(6): 287- 551. [18] Schlamminger S, Steiner R L, Haddad D, et al. A summary of the Planck constant measurements using a watt balance with a superconducting solenoid at NIST[J]. Metrologia, 2015, 52(2): L5- L8. [19] Haddad H, Seifert F, Chao L S, et al. Measurement of the Planck constant at the National Institute of Standards and Technology from 2015 to 2017[J]. Metrologia, 2017, 54(5): 633-641. [20] Geneves G, Gournay P, Gosset A, et al. The BNM watt balance project[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(2): 850-853. [21] Gournay P, Gérard Genevès, Alves F, et al. Magnetic circuit design for the BNM Watt balance experiment[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(2): 742-745. [22] Fang H, Kiss A, Picard A, et al. A watt balance based on a simultaneous measurement scheme[J]. Metrologia, 2014, 51(2): S80-S87. [23] Fang H, Kiss A, De Mirandes E, et al. Status of the BIPM watt balance[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(6): 1491-1498. [24] SANCHEZ C A, WOOD B M. Alignment of the NRC watt balance: considerations, uncertainties and techniques[J]. Metrologia, 2014, 51(2): S42-S53. [25] KIBBLE B. P, ROBINSON I. A. Principles of a new generation of simplified and accurate watt balances[J]. Metrologia, 2014, 51(2): S132-S139. [26] ROBINSON I. A. Simplified fundamental force and mass measurements[J]. Metrologia, 2016, 53(4): 1054-1060. [27] SANCHEZ C A, WOOD B M, GREEN R G, et al. A determination of Planck’s constant using the NRC watt balance[J]. Metrologia, 2014, 51(2): S5-S14. [28] WOOD B M, SANCHEZ C A, GREEN R G et al. A summary of the Planck constant determinations using the NRC Kibble balance[J]. Metrologia, 2017, 54: 399-406. [29] EICHENBERGER A, BAUMANN H, JEANNERET B, et al. Determination of the Planck constant with the METAS watt balance[J]. Metrologia, 2011, 48(3): 133-141. [30] BAUMANN H, EICHENBERGER A, COSANDIER F, et al. Design of the new METAS watt balance experiment Mark II[J]. Metrologia, 2013, 50(3): 235-242. [31] COSANDIER F, EICHENBERGER A, BAUMANN H, et al. Development and integration of high straightness flexure guiding mechanisms dedicated to the METAS watt balance Mark II[J]. Metrologia, 2014, 51(2): S88-S95.