留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹干涉仪测量太赫兹波长及溯源研究

邓玉强 郭树恒 孙青 李超辰

邓玉强,郭树恒,孙青,等. 太赫兹干涉仪测量太赫兹波长及溯源研究[J]. 计量科学与技术,2023, 67(4): 3-10 doi: 10.12338/j.issn.2096-9015.2023.0084
引用本文: 邓玉强,郭树恒,孙青,等. 太赫兹干涉仪测量太赫兹波长及溯源研究[J]. 计量科学与技术,2023, 67(4): 3-10 doi: 10.12338/j.issn.2096-9015.2023.0084
DENG Yuqiang, GUO Shuheng, SUN Qing, LI Chaochen. Traceable Measurement of Terahertz Wavelength Using Terahertz Interferometry[J]. Metrology Science and Technology, 2023, 67(4): 3-10. doi: 10.12338/j.issn.2096-9015.2023.0084
Citation: DENG Yuqiang, GUO Shuheng, SUN Qing, LI Chaochen. Traceable Measurement of Terahertz Wavelength Using Terahertz Interferometry[J]. Metrology Science and Technology, 2023, 67(4): 3-10. doi: 10.12338/j.issn.2096-9015.2023.0084

太赫兹干涉仪测量太赫兹波长及溯源研究

doi: 10.12338/j.issn.2096-9015.2023.0084
基金项目: 国家自然科学基金项目(11874333);河北省重点研发计划项目(22342001D)。
详细信息
    作者简介:

    邓玉强(1976-),中国计量科学研究院研究员,研究方向:太赫兹计量、飞秒激光测量、激光辐射度测量,邮箱:yqdeng@nim.ac.cn

  • 中图分类号: TB96

Traceable Measurement of Terahertz Wavelength Using Terahertz Interferometry

  • 摘要: 频率是太赫兹辐射的关键参数,太赫兹频率测量和溯源是太赫兹技术研究和应用的关键。为实现太赫兹激光波长的准确测量和量值溯源,研制了太赫兹干涉仪对太赫兹辐射源波长和频率进行测量。搭建了法布里—珀罗干涉仪和迈克尔逊干涉仪测量太赫兹辐射源的波长和频率,对返波管振荡器太赫兹辐射源和太赫兹倍频器分别进行了波长测量。提出采用高阻硅片作为太赫兹分束器,不仅结构简单,而且实现了宽频段范围的波长和频率测量。使用单个硅片作为分束器,实现了90~800 GHz宽频段范围内太赫兹辐射源的测量并获得了理想的测量结果。通过对测量的太赫兹干涉作Fourier变换,获得太赫兹频率信息。采用太赫兹频率梳对两种太赫兹干涉仪在100 GHz和300 GHz频率进行了标定校准,实现了太赫兹干涉仪对太赫兹辐射波长的准确测量和结果校正,从而实现了太赫兹干涉仪测量结果量值溯源至国际单位制,并对测量结果进行了不确定度分析。太赫兹干涉法测量波长结构简单,使用方便,将在太赫兹波长测量中获得广泛应用。
  • 图  1  法布里—珀罗干涉仪装置图

    注:SP1、SP2:硅片;TS:移动平台;C:斩波器;D:热释电探测器;Lock in:锁相放大器。

    Figure  1.  Schematic of the terahertz Fabry-Perot interferometer

    图  2  迈克尔逊干涉仪装置图

    注:M1、M2:平面金属反射镜;C:斩波器;BS:分束器;D:热释电探测器;Lock in:锁相放大器。

    Figure  2.  Schematic of the Michelson interferometer

    图  3  法布里——珀罗干涉仪测量返波管振荡器辐射频率结果

    注:(a) 4372 V;(b) 4447 V;(c) 4658 V;(d) 4661 V。

    Figure  3.  Measurement results of the backward-wave oscillator radiation frequency using the Fabry-Perot interferometer

    图  4  法布里——珀罗干涉仪对高频信号发生器倍频辐射频率测量结果

    Figure  4.  Measurement results of frequency multiplier radiation frequency using the Fabry-Perot interferometer

    图  5  迈克尔逊干涉仪测量返波管振荡器辐射频率结果

    注:(a) 4372 V;(b) 4447 V;(c) 4658 V;(d) 4661 V。

    Figure  5.  Measurement results of the backward-wave oscillator radiation frequency using the Michelson interferometer

    图  6  迈克尔逊干涉仪对高频信号发生器倍频辐射频率测量结果

    Figure  6.  Measurement results of frequency multiplier radiation frequency using the Michelson interferometer

    图  7  法布里——珀罗干涉仪与迈克尔逊干涉仪测量结果比较

    Figure  7.  Comparison of measurement results between the Fabry-Perot interferometer and the Michelson interferometer

    表  1  法布里——珀罗干涉仪测量返波管振荡器频率结果

    Table  1.   Measurement results of the backward-wave oscillator frequency using the Fabry-Perot interferometer

    Voltage/VFrequency/GHz
    4372758.0
    4447766.5
    4658777.5
    4661778.5
    下载: 导出CSV

    表  2  法布里——珀罗干涉仪频率测量溯源结果

    Table  2.   Traceable frequency measurement results using the Fabry-Perot interferometer

    Frequency comb
    measurement
    results/GHz
    Fabry-Perot
    interferometer measurement
    results/GHz
    Correction factor
    100.075299.501.0058
    300.2256298.01.0075
    下载: 导出CSV

    表  3  法布里——珀罗干涉仪校准后的返波管振荡器频率测量结果

    Table  3.   Corrected frequency measurement results of the backward-wave oscillator using the Fabry-Perot interferometer

    Voltage/VMeasured Frequency/GHzCorrected Frequency/GHz
    4372758.0763.0
    4447766.5771.5
    4658777.5782.6
    4661778.5783.6
    下载: 导出CSV

    表  4  迈克尔逊干涉仪测量返波管振荡器频率结果

    Table  4.   Measurement results of the backward-wave oscillator frequency using the Michelson interferometer

    Voltage/VFrequency/GHz
    4372758.0
    4447764.5
    4658777.5
    4661778.0
    下载: 导出CSV

    表  5  迈克尔逊干涉仪频率测量溯源结果

    Table  5.   Traceable frequency measurement results using the Michelson interferometer

    Frequency comb measurement results/GHzFabry-Perot interferometer measurement results/GHzCorrection factor
    100.075299.01.011
    300.2256297.51.009
    下载: 导出CSV

    表  6  迈克尔逊干涉仪校准后的返波管振荡器频率测量结果

    Table  6.   Corrected frequency measurement results of the backward-wave oscillator using the Michelson interferometer

    Voltage/VMeasured Frequency/GHzCorrected Frequency/GHz
    4372758.0765.6
    4447764.5772.1
    4658777.5785.3
    4661778.0785.8
    下载: 导出CSV

    表  7  太赫兹干涉仪测量波长和频率的不确定度评定表

    Table  7.   Uncertainty assessment table for terahertz wavelength and frequency measurements using a terahertz interferometer

    Source Type Uncertainty
    Traceable standard B 0.10%
    Source stability B 0.05%
    Measurement repeatability A 0.05%
    Frequency resolution B 0.08%
    Stage nonlinearity B 0.05%
    Optical path B 0.10%
    Surrounding B 0.05%
    Combined uncertainty (k=1) B 0.19%
    Expanded uncertainty (k=2) B 0.38%
    下载: 导出CSV
  • [1] Masayoshi Tonouchi. Cutting-edge terahertz technology[J]. Nat. Photonics, 2007, 1(2): 97-105.
    [2] Carlo Sirtori. Applied physics: Bridge for the terahertz gap[J]. Nature, 2002, 417(6885): 132-133.
    [3] Bradley Ferguson, Xi-Cheng Zhang. Materials for terahertz science and technology[J]. Nat. Mater. , 2002, 1(1): 26-33.
    [4] E Pickwell, V P Wallace. Biomedical applications of terahertz technology[J]. J. Phys. D: Appl. Phys, 2006, 39(17): R301-R309.
    [5] Andreas Steiger, Ralf Müller, Alberto Remesal Oliva, et al. Terahertz Laser Power Measurement Comparison[J]. IEEE T. THz. Sci. Techn. , 2016, 6(5): 664-669.
    [6] John H. Lehman, Bob Lee, Erich N. Grossman. Far infrared thermal detectors for laser radiometry using a carbon nanotube array[J]. Appl. Opt. , 2011, 50(21): 4099-4104.
    [7] Yuqiang Deng, Qing Sun, Jing Yu, et al. Broadband high-absorbance coating for terahertz radiometry[J]. Optics Express, 2013, 21(5): 5737-5742.
    [8] Yuqiang Deng, Jing Li, Qing Sun. Traceable Measurement of CW and Pulse Terahertz Power with Terahertz Radiometer[J]. IEEE J. Sel. Top. Quan. Electr. , 2007, 23(4): 3800306.
    [9] Andreas Steiger, Ralf Müller, Alberto Remesal Oliva, et al. . Terahertz Laser Power Measurement Comparison[J]. IEEE T. THz Sci. Techn. , 2016, 6(5): 664-669.
    [10] 邓玉强, 孙青, 于靖, 等. 太赫兹辐射功率计量研究进展与国际比对[J]. 中国激光, 2017, 44(3): 0314001.
    [11] Yuqiang Deng, Qing Sun, Jing Yu. On-line calibration for linear time-base error correction of terahertz spectrometers with echo pulses[J]. Metrologia, 2014, 51(1): 18-24.
    [12] M. Naftaly, R. A. Dudley, J. R. Fletcher, et al. Frequency calibration of terahertz time-domain spectrometers[J]. J. Opt. Soc. Am. B. , 2009, 26(7): 1357-1392.
    [13] Yuqiang Deng, Heiko Füser, and Mark Bieler. Absolute intensity measurements of CW GHz and THz radiation using electro-optic sampling[J]. IEEE T. Instrum. Meas. , 2015, 64(6): 1734-1740.
    [14] 孟莹, 邓玉强, 郭树恒, 等. 基于频率梳的太赫兹辐射功率密度测量[J]. 红外与毫米波学报, 2019, 38(2): 254-261.
    [15] Takeshi Yasui, Shuko Yokoyama, Hajime Inaba, et al. Terahertz Frequency Metrology Based on Frequency Comb[J]. IEEE J. Sel. Top. Quant, 2011, 17(1): 191-201.
    [16] Heiko Füser, Rolf Judaschke, Mark Bieler. High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser[J]. Appl. Phys. Lett., 2011, 99(12): 121111.
    [17] Heiko Füser, Mark Bieler. Terahertz Frequency Combs[J]. J. Infrared Milli. Terahz. Waves, 2014, 35(8): 585-609.
    [18] 孙青, 杨奕, 孟飞, 等. 基于频率梳的太赫兹频率精密测量方法研究[J]. 光学学报, 2016, 36(4): 0412002.
    [19] 孙青, 杨奕, 邓玉强, 等. 利用非锁定飞秒激光实现太赫兹频率的精密测量[J]. 物理学报, 2016, 65(15): 150601.
    [20] Oliver Kliebisch, Dirk C. Heinecke, Stefano Barbieri, et al. Unambiguous real-time terahertz frequency metrology using dual 10 GHz femtosecond frequency combs[J]. Optica, 2018, 5(11): 1431-1437.
    [21] Yi-Da Hsieh, Hiroto Kimura, Kenta Hayashi, et al. Terahertz Frequency-Domain Spectroscopy of Low-Pressure Acetonitrile Gas by a Photomixing Terahertz Synthesizer Referenced to Dual Optical Frequency Combs[J]. J. Infrared Milli. Terahz. Waves, 2016, 37(9): 903-915.
    [22] 邬佳璐, 方波, 李剑敏, 等. 基于迈克尔逊干涉法的太赫兹波长精密测量[J]. 计量学报, 2022, 43(9): 1147-1153.
    [23] 曹铁岭, 姚建铨. 基于法布里-珀罗干涉仪的太赫兹波长测试仪[J]. 现代科学仪器, 2008(2): 36-39.
    [24] 董凯, 赖伟恩, 孙丹丹, 等. 基于金属孔阵列的聚酰亚胺薄膜太赫兹探测[J]. 强激光与离子束, 2013, 25(6): 1479-1482.
    [25] Li Chenlong, Feng Lishuang, Zhou Zhen, et al. Optical-control terahertz modulator based on subwavelength metallic hole arrays[J]. Infrared and Laser Engineering, 2014, 43(12): 4013-4016.
    [26] R. Ulrich, K. F. Renk, L. Genzel. Tunable submillimeter interferometers of the Fabry-Perot type[J]. IEEE T Microw. Theory, 1963, 11(5): 363-371.
    [27] Li-Jin Chen, Tzeng-Fu Kao, Ja-Yu Lu, et al. A simple terahertz spectrometer based on a lower flectivity Fabry-Perot interferometer using Fourier transform spectroscopy[J]. Opt. Express, 2006, 14(9): 3840-3846.
    [28] Heribert Eisele, Mira Naftaly, John R Fletcher , et al. A simple interferometer for the characterization of sources at terahertz frequencies[J]. Meas. Sci. Technol, 2007, 18(8): 2623.
    [29] F Turkoglu, H Koseoglu, Y Demirhan, et al. Interferometer measurements of terahertz waves from Bi2Sr2CaCu2O8+d mesas[J]. Supercond. Sci. Technol, 2012, 25: 125004.
    [30] 邓玉强, 邢岐荣, 郎利影, 等. THz波的小波变换频谱分析[J]. 物理学报, 2005, 54(11): 5224-5227.
    [31] 国家质量监督检验检疫总局. 测量不确定度评定与表示: JJF 1059.1-2012[S]. 北京: 中国标准出版社, 2012.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  145
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-22
  • 录用日期:  2023-04-10
  • 修回日期:  2023-05-19
  • 网络出版日期:  2023-07-03
  • 刊出日期:  2023-04-18

目录

    /

    返回文章
    返回