留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氟磷谱定量核磁共振法进展综述

黄挺 吴华鑫

黄挺,吴华鑫. 氟磷谱定量核磁共振法进展综述[J]. 计量科学与技术,2023, 67(5): 9-15 doi: 10.12338/j.issn.2096-9015.2023.0095
引用本文: 黄挺,吴华鑫. 氟磷谱定量核磁共振法进展综述[J]. 计量科学与技术,2023, 67(5): 9-15 doi: 10.12338/j.issn.2096-9015.2023.0095
HUANG Ting, WU Huaxin. A Review on the Advancements in Quantitative Nuclear Magnetic Resonance Spectroscopy of Fluorine and Phosphorus[J]. Metrology Science and Technology, 2023, 67(5): 9-15. doi: 10.12338/j.issn.2096-9015.2023.0095
Citation: HUANG Ting, WU Huaxin. A Review on the Advancements in Quantitative Nuclear Magnetic Resonance Spectroscopy of Fluorine and Phosphorus[J]. Metrology Science and Technology, 2023, 67(5): 9-15. doi: 10.12338/j.issn.2096-9015.2023.0095

氟磷谱定量核磁共振法进展综述

doi: 10.12338/j.issn.2096-9015.2023.0095
基金项目: 中国计量科学研究院基本科研业务费项目(21-AKYZZ2120-21)。
详细信息
    作者简介:

    黄挺(1979-),中国计量科学研究院研究员,研究方向:化学计量、分析化学等,邮箱:huangting@nim.ac.cn

  • 中图分类号: TB99

A Review on the Advancements in Quantitative Nuclear Magnetic Resonance Spectroscopy of Fluorine and Phosphorus

  • 摘要: 定量核磁共振法(qNMR)作为一种选择性强、准确快捷的定量分析方法,广泛应用于有机化合物的纯度定值。它作为潜在基准方法,在国际计量比对中得到越来越广泛的关注与应用,而且最新的国际计量发展规划计划将其从传统的氢谱(1H)扩展至氟谱、磷谱的技术领域。随着qNMR在代谢组学、环境分析和生理学研究等新的领域的应用,引入了天然产物、生物分子、蛋白质和代谢物等更复杂的分子和系统,使得常用的1H-qNMR遇到很大挑战,因此基于氟(19F)和磷(31P)等具有核磁共振特性核的qNMR日益受到重视。与1H-qNMR相比,氟谱和磷谱具有相近的灵敏度、更高的分辨能力,可以排除残留溶剂或水峰的干扰。介绍了19F-qNMR和31P-qNMR的特性优势、方法上的改进性和近年来在各领域的研究进展。在19F-qNMR和31P-qNMR方法学研究中,重点在具有溯源性的标准物质的研制、同轴插入内标方法、参数优化等方面。在应用领域,19F-qNMR重点集中于医药、材料、环境等领域,31P-qNMR集中于食品、医药、生物等领域。
  • 表  1  19F-qNMR与类似技术的比较

    Table  1.   Comparison of 19F-qNMR with analogous techniques

    类似技术 项目 19F-qNMR结果 类似技术结果 文献
    1H- qNMR 线性 0.9999 0.9999 [18]
    精度 0.49% 0.82% [18]
    重复性 0.73% 0.62% [18]
    定量限(mg/mL) 1.34 1.02 [18]
    平均值 93.1% 95.3% [18]
    RSD 0.73% 0.62% [18]
    回收率 98.7% 98.6% [18]
    滴定性 当量重量(g/eq) 385 393 [23]
    气相色谱-
    质谱法
    雨水中的三
    氟乙酸(ng/L)
    80 83 [33]
    185 200 [33]
    850 810 [33]
    下载: 导出CSV

    表  2  31P-qNMR与类似技术的比较

    Table  2.   Comparison of 31P-qNMR with analogous techniques

    类似技术 项目 31P-qNMR
    结果
    类似技
    术结果
    文献
    液相色谱 磷霉素钙(mg/tablet) 511 516 [36]
    杂质A含量 2.12% 2.05% [36]
    离子交换色谱 焦磷酸钠 96.01% 96.32% [39]
    1H- qNMR TPPTS 58.51% 58.72 [45]
    二维薄层色谱 磷脂酰胆碱 25.3% 25.4% [47]
    磷脂酰乙醇胺 25.4% 21.8% [47]
    磷脂酰肌醇 13.6% 14.0% [47]
    离子色谱法 PO43− (g/kg) 3.50 3.34 [49]
    P2O74− (g/kg) 0.61 0.59 [49]
    1H- qNMR 索非布韦 99.44% 99.10% [50]
    下载: 导出CSV
  • [1] Working Group on Organic Analysis: Strategy 2021-2030. Consultative Committee for Amount of Substance-Metrology in Chemistry and Biology[EB/OL]. [2023-03-27].https://www.bipm.org/documents/20126/2071059/CCQM-OAWG+Strategy+document+2021-2030.pdf.
    [2] RIGGER R, RUCK A, HELLRIEGEL C, et al. Certified reference material for use in 1H, 31P, and 19F quantitative NMR, ensuring traceability to the international system of units[J]. Journal of AoacInterna TionalVol, 2017, 100: 1365-1375.
    [3] DO N M, OLIVIER M A, SALISBURY JJ, et al. Application of quantitative 19F and 1H NMR for reaction monitoring and in situ yield determinations for an early stage pharmaceutical candidate[J]. Anal Chem, 2011, 83: 8766-8771. doi: 10.1021/ac202287y
    [4] HENDERSON T J. Quantitative NMR spectroscopy using coaxial inserts containing a reference standard: purity determinations for military nerve agents[J]. Anal Chem, 2002, 74: 191-198. doi: 10.1021/ac010809+
    [5] MANIARA G, RAJAMOORTHI K, RAJAN S, et al. Method performance and validation for quantitative analysis by 1H and 31P NM spectroscopy. Applications to analytical standards and agricultural Chemicals[J]. Anal Chem, 1998, 70: 4921-4928. doi: 10.1021/ac980573i
    [6] DEEN T S A, HIBBERT D B, HOOK J M, et al. Quantitative nuclear magnetic resonance spectrometryII. Purity of phosphorus-based agrochemicals glyphosate(N-(phosphonomethyl)-glycine) and profenofos(O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate)measured by 1H and 31P QNMR spectrometry[J]. Analytica Chimica Acta, 2002, 474: 125-135. doi: 10.1016/S0003-2670(02)01017-6
    [7] AKINJOLE A, ALNAFISAH A S, COULIBALY F S, et al. Fluorine (19F) nuclear magnetic resonance spectroscopy for realtime maraviroc analysis from microparticulate systems[J]. Journal of Pharmaceutical Sciences, 2021, 00: 1-9.
    [8] 韩智, 龚蕾, 王会霞, 等. 定量核磁共振磷谱在食品分析检测中的研究进展[J]. 食品与机械, 2021, 37(3): 207-212.
    [9] NISHIZAKI Y, LANKIN D C, CHEN S, et al. Accurate and precise external calibration enhances the versatility of quantitative NMR (qNMR)[J]. Anal Chem, 2011, 93, 2733-2741.
    [10] 郎洁, 董燕, 王嫱智, 等. 核磁共振波谱内标法测定四氯虫酰胺标样的含量 [J]. 农药, 2020, 59(7): 499-501.
    [11] CASTAING-CORDIER T, LADROUE V, BESACIER F, et al. High-field and benchtop NMR spectroscopy for the characterization of new psychoactive substances[J]. Forensic Science International, 2021, 321: 110718. doi: 10.1016/j.forsciint.2021.110718
    [12] GERIG J T. Fluorine NMR [EB/OL]. [2023-03-29].https://www.biophysics.org/Portals/0/BPSAssets/Articles/gerig.pdf.
    [13] DALVIT C, KO S Y, VULPETTI A. Application of the rule of shielding in the design of novel fluorinated structuralmotifs and peptidomimetics[J]. Journal of Fluorine Chemistry, 2013, 152: 129-135. doi: 10.1016/j.jfluchem.2013.01.017
    [14] ARNTSON K E, POMERANTZ W C K. Protein-observed fluorine NMR: a biorthogonal approach for small molecule discovery[J]. Med Chem, 2016, 59: 5158-5171. doi: 10.1021/acs.jmedchem.5b01447
    [15] MISHRA N K, URICK A K, EMBER S W J, et al. Fluorinated aromatic amino acids are sensitive 19F NMR probes for bromodomain-ligand interactions[J]. ACS Chem, Biol, 2014, 9: 2755-2760. doi: 10.1021/cb5007344
    [16] MATTES A O, RUSSELL D, TISHCHENKO E, et al. Application of 19F quantitative NMR to pharmaceutical analysis[J]. Concepts MagnReson Part A, 2016, 45: 21422.
    [17] YU J, HALLAC RR, CHIGURU S. New frontiers and developing applications in 19F NMR[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2013, 70: 25-49. doi: 10.1016/j.pnmrs.2012.10.001
    [18] LIU Y, LIU Z, YANG H, et al. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content[J]. Journal of Analytical Methods in Chemistry, 2016, 5: 5-10.
    [19] VLASIOU M, DROUZAC. 19F NMR for the speciation and quantification of theOH-molecules in complex matrices[J]. Anal Methods, 2015, 7: 3680-3684. doi: 10.1039/C5AY00178A
    [20] LIU C, SONG C, JIA W, et al. The application of 19F NMR spectroscopy for the analysis of fluorinated new psychoactive substances (NPS)[J]. Forensic Science International, 2022, 340: 111450. doi: 10.1016/j.forsciint.2022.111450
    [21] AYOTTE Y, WOO S, LAPLANTE S R. Practical considerations and guidelines for spectral referencing for fluorine NMR ligand screening[J]. ACS Omega, 2022, 7: 13155-13163. doi: 10.1021/acsomega.2c00613
    [22] KADDOURI A E, PERRIN L, JEAN B, et al. Investigation of perfluorosulfonic acid ionomer solutions by 19F NMR and DLS: establishment of an accurate quantification protocol[J]. Polymer Physics, 2016, 54: 2210-2222. doi: 10.1002/polb.24130
    [23] MOGHIMI A, OMRANI I, KHANMIRI R H, et al. Determination of NCO content of the urethane prepolymers by 19F NMR spectroscopy[J]. Polymer Testing, 2014, 33: 30-33. doi: 10.1016/j.polymertesting.2013.11.002
    [24] YAMAZAKI T, SAITO T, IHARA T. A new approach for accurate quantitative determination using fluorine nuclear magnetic resonance spectroscopy[J]. J Chem Metrol, 2017, 11: 16-22. doi: 10.25135/jcm.3.17.03.036
    [25] NASR JJ, SHALAN S. Validated 1H and 19F nuclear magnetic resonance for the quantitative determination of the hepatitis C antiviral drugs sofosbuvir, ledipasvir, and daclatasvir in tablet dosage forms[J]. Microchemical Journal, 2020, 152: 104437. doi: 10.1016/j.microc.2019.104437
    [26] WANG D, PARK J H, ZHENG J, et al. Multiphase drug distribution and exchange in oil-in-Water nano emulsion revealed by high-resolution 19F qNMR[J]. Mol Pharmaceutics, 2022, 19: 2142-2150. doi: 10.1021/acs.molpharmaceut.2c00025
    [27] 邓冬艳, 宋红杰, 齐悦. 核磁共振氟谱法测定氟他胺含量的实验设计 [J]. 实验室研究与探索, 2019, 38(6): 30-37.
    [28] 杨百勤, 孔二丽, 薛潇迪, 等. 采用核磁共振氟谱定性与定量分析盐酸氟西汀 [J]. 药学学报, 2012, 47(5): 630-633.
    [29] 史艺文, 李钦, 林崇熙. 核磁共振氟谱对五氟利多的定量分析 [J]. 河南大学学报(医学版), 2015, 34(4): 252-255.
    [30] MA S, CHEN Q, JOGENSEN F H, et al. 19F NMR studies of Nafion™ ionomer adsorption on PEMFC catalysts and supporting carbons[J]. Solid State Ionics, 2007, 178: 1568-1575. doi: 10.1016/j.ssi.2007.10.007
    [31] 叶怀英, 孟庆文, 余国军, 等. 核磁共振技术在含氟聚合物定量分析中的应用 [J]. 分析与检测, 2022, 28(5): 29-33.
    [32] BHAT A P, POMERANTZ W C K, ARNOLD W A. Finding fluorine: photoproduct formation during the photolysis of fluorinated pesticides[J]. Environ Sci Technol, 2022, 56: 12336-12346. doi: 10.1021/acs.est.2c04242
    [33] ELLIS D A, MARTIN J W, MUIR D C G, et al. Development of an 19F NMR method for the analysis of fluorinated acids in environmental water samples[J]. Anal Chem, 2000, 72: 726-731. doi: 10.1021/ac9910280
    [34] AKHDAR A, ANDANSON J, FAURE S, et al. Application of quantitative 1H and 19F NMR to organometallics[J]. Journal of Organometallic Chemistry, 2021, 950: 121991. doi: 10.1016/j.jorganchem.2021.121991
    [35] AGRAHARI V, MENG J, PUROHIT SS, et al. Real-time analysis of tenofovir release kinetics using quantitative phosphorus (31P) nuclear magnetic resonance spectroscopy[J]. Journal of Pharmaceutical Sciences, 2017, 106: 3005-3015. doi: 10.1016/j.xphs.2017.03.043
    [36] JIANG H, CHEN H, CAI N, et al. Quantitative 31P-NMR spectroscopy for the determination of fosfomycin and impurity A in pharmaceutical products of fosfomycin sodiumor calcium[J]. MagnReson Chem, 2015, 53: 454-459.
    [37] 黄挺, 王静羽, 万康妮. 去除杂质干扰的定量核磁共振法进展综述 [J]. 计量科学与技术, 2022, 66(6): 26-30.
    [38] MICHAEL M A, BERKOWITZ H D, GROSS G M, et al. 31P nuclear magnetic resonance spectroscopy: Noninvasive biochemical analysis of the ischemic extremity[J]. J Vasc Surg, 1986, 3: 411-420.
    [39] GARD D R, BURQUIN J C, GARD J K, et al. Quantitative Analysis of Short-Chain Phosphates by Phosphorus-31 Nuclear Magnetic Resonance and Interlaboratory Comparison with Infrared and Chromatographic Methods[J]. Anal Chem, 1992, 64: 557-561. doi: 10.1021/ac00029a020
    [40] MARTINO R, GILARD V, DESMOULIN D, et al. Fluorine-19 or phosphorus-31 NMR spectroscopy: A suitable analytical technique for quantitative in vitro metabolic studies of fluorinated or phosphorylated drugs[J]. J Pharmaceut Biomed, 2005, 38: 871-891. doi: 10.1016/j.jpba.2005.01.047
    [41] 黄挺, 张伟, 全灿, 等. 定量核磁共振新方法在纯度定值的应用 [J]. 计量技术, 2018(9): 8-9.
    [42] MATSUMI R, HELLRIEGEL C, SCHOENENBERGER B, et al. Biocatalytic asymmetric phosphorylation of mevalonate[J]. RSC Adv, 2014, 4: 12989-12994. doi: 10.1039/c4ra01299b
    [43] DEREWINSKI M, SARV P, SUN X, et al. Reversibility of the Modification of HZSM-5 with Phosphate Anions[J]. J Phys Chem C, 2014, 118: 6122-6131. doi: 10.1021/jp4053677
    [44] ATANASSOVA M, KURTEVA V. Peculiar synergistic extraction behavior of Eu(III) in ionic liquids: benzoyl acetone and CMPO fusion[J]. Sep Purif Technol, 2017, 183: 226-236. doi: 10.1016/j.seppur.2017.03.033
    [45] 梁春杰, 孟庆春, 徐晓婷, 等. 基于1 H - NMR、31 P - NMR的三苯基膦三间磺酸钠定量分析研究 [J]. 分析测试学报, 2020, 39(8): 1018-1022.
    [46] BELMONTE-SÁNCHEZ J R, AGUILERA-SÁEZ L M, ROMERO-GONZÁLEZ R, et al. Determination of etidronic acid in vegetable-washing water by a simple and validated quantitative 31P nuclear magnetic resonance method[J]. Microchem J, 2019, 150: 104083 doi: 10.1016/j.microc.2019.104083
    [47] KATO T, NISHIMIYA M, KAWATA A, et al. Quantitative 31P NMR Method for Individual and Concomitant Determination of Phospholipid Classes in Polar Lipid Samples[J]. J Oleo Sci, 2018, 67(1): 1279-1289.
    [48] LOENING N M, CHAMBERLIN A M, ZEPEDA A G, et al. Quantification of phosphocholine and glycerophosphocholine with 31P edited 1H NMR spectroscopy[J]. NMR Biomed, 2005, 18: 413-420. doi: 10.1002/nbm.973
    [49] 韩 智, 江丰, 周 密, 等. 核磁共振磷谱定量测定肉制品中磷酸盐的含量 [J]. 食品工业科技, 2021, 42(9): 275-280.
    [50] UCHIYAMA N, KIYOTA K, HOSOE J, et al. Quantitative 31P-NMR for Purity Determination of Sofosbuvir and Method Validation[J]. Chem Pharm Bull, 2022, 70(12): 892-900. doi: 10.1248/cpb.c22-00639
    [51] BETTJEMANB I, HOFMAN K A, BURGESS E J, et al. Seafood Phospholipids: Extraction Efficiency and Phosphorous Nuclear Magnetic Resonance Spectroscopy (31P NMR) Profiles[J]. J Am Oil Chem Soc, 2018, 95: 779-786. doi: 10.1002/aocs.12086
    [52] WANG Y, YANG B, WAN B, et al. Degradation of Black Phosphorus: A Real-Time 31P NMR Study[J]. 2D Mater, 2016, 3: 035025. doi: 10.1088/2053-1583/3/3/035025
    [53] MAZUMDER A, KUMAR A, PUROHIT A K, et al. A high-resolution phosphorus-31 nuclear magnetic resonance (NMR) spectroscopic method for the non-phosphorus markers of chemical warfare agents[J]. Anal Bioanal Chem, 2012, 402: 1643–1652. doi: 10.1007/s00216-011-5561-7
  • 加载中
计量
  • 文章访问数:  459
  • HTML全文浏览量:  281
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-30
  • 录用日期:  2023-04-23
  • 修回日期:  2023-05-19
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回