留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同聚合物基质的LA-ICP-MS剥蚀行为探究

高天恒 任同祥

高天恒,任同祥. 不同聚合物基质的LA-ICP-MS剥蚀行为探究[J]. 计量科学与技术,2023, 67(4): 63-69 doi: 10.12338/j.issn.2096-9015.2023.0105
引用本文: 高天恒,任同祥. 不同聚合物基质的LA-ICP-MS剥蚀行为探究[J]. 计量科学与技术,2023, 67(4): 63-69 doi: 10.12338/j.issn.2096-9015.2023.0105
GAO Tianheng, REN Tongxiang. Investigation into the Ablation Behavior of Different Polymer Matrices using LA-ICP-MS[J]. Metrology Science and Technology, 2023, 67(4): 63-69. doi: 10.12338/j.issn.2096-9015.2023.0105
Citation: GAO Tianheng, REN Tongxiang. Investigation into the Ablation Behavior of Different Polymer Matrices using LA-ICP-MS[J]. Metrology Science and Technology, 2023, 67(4): 63-69. doi: 10.12338/j.issn.2096-9015.2023.0105

不同聚合物基质的LA-ICP-MS剥蚀行为探究

doi: 10.12338/j.issn.2096-9015.2023.0105
基金项目: 中国计量科学研究院基本科研业务费重点领域项目(21-AKYZD2006-3)。
详细信息
    作者简介:

    高天恒(1998-),中国计量科学研究院在读研究生,研究方向:激光剥蚀等,邮箱:gaoth@nim.ac.cn

    通讯作者:

    任同祥(1980-),中国计量科学研究院研究员,研究方向:元素及同位素分析,邮箱:rentx@nim.ac.cn

  • 中图分类号: TB98

Investigation into the Ablation Behavior of Different Polymer Matrices using LA-ICP-MS

  • 摘要: 激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)是一种新型的固体分析技术,目前已广泛应用于地质、冶金、生物、环境等诸多领域。然而对聚合物样品的LA-ICP-MS定量分析中,存在由剥蚀行为差异引起的严重基质效应,从而导致灵敏度差异,最终对准确测量产生重大阻碍,目前关于该类样品剥蚀行为的研究尚为空白。选取了已知Pb、Cd和Cr元素浓度的四种聚合物样品,采用拓展景深显微成像技术研究193 nm及213 nm波长、2.5~15 J·cm−2能量密度等激光条件下剥蚀坑形貌的差异,以及其对信号稳定性及灵敏度的影响。结果显示,193 nm激光的剥蚀行为优于213 nm激光,并且在聚合物样品的激光剥蚀过程中至少存在溅射损失、剥蚀机制损失及絮凝沉降损失三类产生基质效应差异的机制,最终造成元素相关的灵敏度差异。综上,应通过控制能量密度,选用短波长激光来改善剥蚀行为,从而获得更好的分析准确度,并且在选择基质匹配的标准样品时,如热导率等影响剥蚀行为的性质也应纳入考量。相应标准物质及剥蚀行为的研究,应为该领域的研究重点,从而提高测定结果准确度,推动此领域应用的发展。
  • 图  1  拓展景深图像(左)与普通光学成像(右)

    Figure  1.  Extended depth of field image (left) and standard optical imaging (right)

    图  2  193 nm激光在四种样品上的剥蚀坑

    Figure  2.  Ablation craters on four types of samples under 193 nm laser

    图  3  213 nm 激光在四种样品上的剥蚀坑

    Figure  3.  Ablation craters on four types of samples under 213 nm laser

    图  4  ERM EC 681k 样品表面213 nm激光单脉冲剥蚀坑

    Figure  4.  Single pulse ablation craters on the surface of ERM EC 681k sample under 213 nm laser

    图  5  不同能量密度下四个样品的193 nm激光剥蚀坑

    Figure  5.  Ablation craters on four types of samples under 193 nm laser at different energy densities

    图  6  能量密度对JSAC PT 0632中的Pb信号强度的影响

    Figure  6.  Influence of energy density on the signal intensity of Pb in JSAC PT 0632

    表  1  优化后的LA-ICP-MS系统参数表

    Table  1.   Optimized parameters of the LA-ICP-MS system

    电感耦合等离子体质谱
    载气流量 (L·min−1) 1.16
    辅助气流量 (L·min−1) 1.2
    冷却气流量 (L·min−1) 18
    RF功率 (W) 1450
    积分时间 (ms) 150
    测量元素及质量数 208Pb、111Cd、53Cr
    激光剥蚀系统 (213 nm)
    束斑尺寸 (μm) 100
    脉冲频率 (Hz) 10
    能量密度(J·cm−2) 2.5~15
    Laser ablation system (193nm)
    束斑尺寸 (μm) 100
    脉冲频率 (Hz) 10
    能量密度(J·cm−2) 2.5~15
    下载: 导出CSV

    表  2  实验所用样品中Pb、Cd及Cr元素浓度

    Table  2.   Concentrations of Pb, Cd and Cr elements in the samples used in the experiment /μg·g−1

    Pb Cd Cr
    3DP 107.4±0.9 93.3±0.8 103.8±1.9
    JSAC 93.2±2.5 44.7±1.4 94.9±3.4
    BAM 479±17 93±5 470±36
    ERM 98±6 137±4 100±5
    下载: 导出CSV

    表  3  四个样品中元素的灵敏度差异

    Table  3.   Differences in elemental sensitivity among the four samples

    Pb Cd Cr
    浓度(μg·g−1) 灵敏度(cps/(μg·g−1)) 浓度(μg·g−1) 灵敏度(cps/(μg·g−1)) 浓度(μg·g−1) 灵敏度(cps/(μg·g−1))
    3DP 107.4±0.9 6215 93.3±0.8 293.5 103.8±1.9 906.7
    JSAC 93.2±2.5 5592 44.7±1.4 102.7 94.9±3.4 692.6
    BAM 479±17 3248 93±5 84.7 470±36 254.6
    ERM 98±6 3935 137±4 313.9 100±5 400.2
    下载: 导出CSV
  • [1] Hattendorf B , Latkoczy C , Günther Detlef. Peer Reviewed: Laser Ablation-ICPMS[J]. Analytical Chemistry, 2003, 75(15): 341A-347A.
    [2] Martinez M, Baudelet M. Calibration strategies for elemental analysis of biological samples by LA-ICP-MS and LIBS – A review [J]. Anal Bioanal Chem, 2020, 412(1): 27-36.
    [3] Russo R E, Mao X, Liu H, et al. Laser ablation in analytical chemistry—a review [J]. Talanta, 2002, 57(3): 425-451.
    [4] 刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS在地质样品元素分析中的应用 [J]. 科学通报, 2013, 58(36): 3753-3769.
    [5] Austin C, Fryer F, Lear J, et al. Factors affecting internal standard selection for quantitative elemental bio-imaging of soft tissues by LA-ICP-MS [J]. J Anal At Spectrom, 2011, 26(7): 1494-1501.
    [6] Kuczelinis F, Petersen J H, Weis P, et al. Calibration of LA-ICP-MS via standard addition using dried picoliter droplets [J]. J Anal At Spectrom, 2020, 35(9): 1922-1931.
    [7] Douglas D N, O'reilly J, O'connor C, et al. Quantitation of the Fe spatial distribution in biological tissue by online double isotope dilution analysis with LA-ICP-MS: a strategy for estimating measurement uncertainty [J]. J Anal At Spectrom, 2016, 31(1): 270-279.
    [8] Dobrowolska J, Dehnhardt M, Matusch A, et al. Quantitative imaging of zinc, copper and lead in three distinct regions of the human brain by laser ablation inductively coupled plasma mass spectrometry [J]. Talanta, 2008, 74(4): 717-723.
    [9] 冯流星, 王军. 同位素稀释-激光剥蚀-电感耦合等离子体质谱法测定生物组织样品中铁元素的含量 [J]. 分析化学, 2014, 42(4): 536-541.
    [10] 王梅玲, 王海, 任丹华, 等. 铜铟镓硒薄膜元素含量的ICP-OES/ICP-MS分析 [J]. 计量科学与技术, 2022, 66(12): 11-15, 45.
    [11] 池俏俏, 颜一军, 张娴. 激光剥蚀-电感耦合等离子体质谱分析中激光剥蚀池载气对信号响应影响的研究 [J]. 分析测试学报, 2013, 32(2): 233-238.
    [12] Fernández B, Claverie F, Pécheyran C, et al. Direct analysis of solid samples by fs-LA-ICP-MS [J]. TrAC, Trends Anal Chem, 2007, 26(10): 951-966.
    [13] 刘娅聪, 王伟超, 令伟博, 等. 激光剥蚀串联电感耦合等离子体质谱在环境分析中的应用进展 [J]. 分析测试学报, 2021, 40(5): 767-776.
    [14] Stehrer T, Heitz J, Pedarnig J D, et al. LA-ICP-MS analysis of waste polymer materials [J]. Anal Bioanal Chem, 2010, 398(1): 415-424.
    [15] 刘金辉, 郑令娜, 汪冰, 等. 激光剥蚀电感耦合等离子体质谱在生物样品定量分析中的研究进展 [J]. 分析科学学报, 2020, 36(3): 443-448.
    [16] Günther D, Heinrich C A. Comparison of the ablation behaviour of 266 nm Nd: YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis [J]. J Anal At Spectrom, 1999, 14(9): 1369-1374.
    [17] 胡净宇, 王海舟. 高温合金痕量分析中激光剥蚀电感耦合等离子体质谱的分馏效应机理研究 [J]. 分析测试学报, 2009, 28(3): 277-282.
    [18] Pisonero J, Günther D. Femtosecond laser ablation inductively coupled plasma mass spectrometry: Fundamentals and capabilities for depth profiling analysis [J]. Mass Spectrom Rev, 2008, 27(6): 609-623.
    [19] Wu S, Xu C, Klaus S, et al. Study on Ablation Behaviors and Ablation Rates of a 193nm ArF Excimer Laser System for Selected Substrates in LA-ICP-MS Analysis [J]. Rock and Mineral Analysis, 2017, 36(5): 451-459.
    [20] Jenkins K, Goemann K, Belousov I, et al. Investigation of the Ablation Behaviour of Andradite-Grossular Garnets and Rutile with Implications for U-Pb Geochronology [J/OL]. [2023-04-10].https://onlinelibrary.wiley.com/doi/10.1111/ggr.12478.
    [21] Pham D, Tonge L, Cao J N, et al. Effects of polymer properties on laser ablation behaviour [J]. Smart Materials & Structures, 2002, 11(5): 668-674.
    [22] 高天恒, 任同祥, 王松. 基于LA-ICP-MS的软质样品定量分析研究进展[J]. 计量科学与技术, 2023, 67(1): 29-38, 67.
    [23] 冯流星, 马联弟, 王军. X荧光光谱法在聚合物样品中重金属元素的定量分析可行性研究 [J]. 计量学报, 2010, 31(z1): 162-165.
    [24] Gao T H, Ren T X, Zhou Y J, et al. The production of polymer reference materials for microanalysis with high homogeneity by a 3D printing method [J]. J Anal At Spectrom, 2023, 38(4): 893-901.
    [25] Nakano K, Nakamura T, Nakai I, et al. Development of the certified reference materials, plastics (JSAC 0631, JSAC 0632) for determination of hazardous metals by X-ray fluorescence analysis [J]. Bunseki Kagaku, 2007, 56(5): 363-370.
    [26] Simons C, Mans C, Hanning S, et al. Study on microscopic homogeneity of polymeric candidate reference materials BAM H001-BAM H010 by means of synchrotron mu-XRF and LA-ICP-MS [J]. J Anal At Spectrom, 2010, 25(1): 40-43.
    [27] Kempenaers L, Bings N H, Jeffries T E, et al. The use of LA-ICP-MS for the characterization of the micro-heterogeneity of heavy metals in BCR CRM 680 [J]. J Anal At Spectrom, 2001, 16(9): 1006-1011.
    [28] 柯于球, 张路远, 柴辛娜, 等. 硫化物矿物LA-ICP-MS激光剥蚀元素信号响应 [J]. 高等学校化学学报, 2012, 33(2): 257-262.
    [29] Ye J, Hong Y, Li N. Experimental Study on Thrust Performance of Carbon Doped Liquid Working Substance Processed by Laser Ablation [J]. Chinese Journal of Lasers, 2017, 44(2): 0202001.
    [30] 杨文武, 史光宇, 商琦, 等. 飞秒激光剥蚀电感耦合等离子体质谱在地球科学中的应用进展 [J]. 光谱学与光谱分析, 2017, 37(7): 2192-2198.
    [31] 张再平, 王玉. 电感耦合等离子体质谱法测定大米粉中砷、镉含量及不确定度评估 [J]. 计量科学与技术, 2021, 65(12): 60-65.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  99
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 录用日期:  2023-05-08
  • 修回日期:  2023-06-13
  • 网络出版日期:  2023-07-03
  • 刊出日期:  2023-04-18

目录

    /

    返回文章
    返回