Research on High Isolation Analog Switch and its Application in Impedance Metrology
-
摘要: 提出了一种高隔离度CMOS模拟开关电路设计,用于改善传统模拟开关隔离度有限,机械簧片开关切换时间长等缺点,并将高隔离度模拟开关应用于高精度数字采样阻抗电桥,解决电桥系统采样通道信号切换速度慢、信号泄漏影响矢量电压比率精度的难题。设计的模拟开关结构能够简化数字电桥系统,而且宽频范围内关断隔离度理论值、开关切换速度远优于传统模拟开关,在保证数字采样法阻抗高精度量值溯源前提下,提高阻抗校准速度,实用性强;采用的高精度双级电压跟随器电路用于减少模拟开关导通电阻对电桥桥路的影响。实验结果表明,提出的设计方案能够在1 kHz频率下使得数字采样阻抗电桥系统电压采集通道关断隔离度优于−140 dB,在100 Hz~100 kHz频率范围内实现快速、高精度的阻抗参量计量。Abstract: This paper proposes a high isolation CMOS analog switch circuit design aimed at ameliorating the limited isolation of traditional analog switches and the long switching time of mechanical reed switches. This high isolation analog switch is applied to a high-precision digital sampling impedance bridge, addressing issues of slow signal switching speed in bridge systems and signal leakage affecting the accuracy of vector voltage ratios. The proposed analog switch design simplifies the digital bridge system, providing superior off-isolation and switching speed across a broad frequency range compared to traditional analog switches. This ensures the high-precision traceability of impedance measurements using the digital sampling method while increasing the speed of impedance calibration, hence improving practicality. A high-precision dual-stage voltage follower circuit is also utilized to mitigate the impact of the on-resistance of the analog switch on the bridge circuit. Experimental results validate the proposed design, achieving an off-isolation better than -140 dB at 1 kHz and enabling rapid, high-precision impedance parameter measurements in the frequency range of 100 Hz to 100 kHz.
-
Key words:
- metrology /
- analogue switch /
- voltage followers /
- digital sampling /
- impedance metrology
-
表 1 T型与双T型模拟开关关断隔离度对比
Table 1. Comparison of off-isolation between T-type and double-T analog switches
频率范围 关断隔离度/dB T型 双T型 1 kHz 101.00 137.00 10 kHz 101.00 149.00 60 kHz 101.00 140.00 140 kHz 101.00 142.00 250 kHz 100.40 133.10 500 kHz 99.99 128.60 750 kHz 98.70 127.00 1 MHz 98.40 130.00 表 2 四通道关断隔离度测试结果
Table 2. Test results of four-channel off-isolation
测量通道 关断隔离度/dB HP-S HP-X LP-S LP-X 1 kHz −140 −140 −150 −150 2 kHz −139 −139 −146 −146 10 kHz −137 −137 −136 −136 50 kHz −133 −133 −133 −133 100 kHz −128 −128 −131 −131 500 kHz −124 −124 −126 −126 1 MHz −115 −115 −117 −117 表 3 通道间隔离度测试结果
Table 3. Test results of inter-channel isolation
测量通道 关断隔离度/dB H对LP-S H对LP-X 1 kHz −155 −160 2 kHz −150 −153 10 kHz −144 −148 50 kHz −143 −145 100 kHz −141 −144 500 kHz −124 −123 1 MHz −114 −116 -
[1] 贺青, 邵海明, 梁成斌. 电磁计量学研究进展评述[J]. 计量学报, 2021, 42(11): 1543-1552. [2] 张小辉, 吴传贵, 王纬国, 等. 基于四线制的电阻自动测量研究与实现[J]. 航空维修与工程, 2020(4): 4. [3] 黄晓钉, 王忠伟, 蔡建臻, 等. 交流量子电阻传递电桥的研制[J]. 中国测试, 2022, 48(11): 138-144. [4] 周天地, 贾正森, 杨雁, 等. 基于PJVS的交流量子电压比例研究[J]. 仪器仪表学报, 2020(2): 8. [5] 刘丹, 李树彪, 庄志远. 矢量网络分析仪的时频域阻抗测量技术[J]. 国外电子测量技术, 2017, 36(8): 38-41. [6] 周琨荔, 屈继峰, 张钟华, 等. 交流量子电压标准研究综述[J]. 计量学报, 2017, 38(4): 6. [7] 黄璐, 张钟华, 赵伟. 交流电阻标准研究进展[J]. 电测与仪表, 2004, 41(6): 5. [8] Thompson A M. AC bridge methods for the measurement of three-terminal amittances[J]. IEEE Transactions on Instrumentation and Measurement, 1964 (4): 189-197. [9] 颜晓军, 扈蓓蓓, 李亚琭, 等. 一种新型的交流阻抗计量标准装置[J]. 计量学报, 2020, 41(5): 6. [10] Djokić B. A Dual-Channel Calibration System for AC Currents and Small AC Voltages[J]. IEEE Transacti-ons on Instrumentation and Measurement, 2015, 64(6): 1773-1778. [11] Callegaro L, D’Elia V, Kampik M, et al. Experiences with a two-terminal-pair digital impedance bridge[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(6): 1460-1465. [12] Hong-Wei S, Le-Nian H. Analysis and modeling of t-he glitch error in current-steering D/A converter[C]. IEEE, 2010. [13] Yang Y, Lu W, Huang L, et al. A digital impedance bridge with auto-balancing source ratio[C]. IEEE, 2016. [14] 武小娟, 潘明海, 于维双, 等. 基于DSP的高精度阻抗测量方法及其实现[J]. 计量技术, 2005(3): 8-11. [15] 齐福强, 杨雁, 迟宗涛, 等. 宽频高精度电感同步采样测量研究[J]. 电测与仪表, 2016, 53(5): 5. [16] Overney F, Jeanneret B. RLC bridge based on an automated synchronous sampling system[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(7): 2393-2398. [17] Mašláň S, Šíra M, Zachovalová V N, et al. Four ter-minal pair digital sampling impedance bridge[C]. IEEE, 2016. [18] Mašláň S, Šíra M, Skalická T, et al. Four-terminal p-air digital sampling impedance bridge up to 1MHz[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 1860-1869. [19] 朱才溢, 喻准, 罗颖. 变压器频率特性改良与变压精准度的优化设计[J]. 计量科学与技术, 2022, 66(2): 44-49, 14. [20] 向聪德, 杨玲, 于沅君, 等. 一种交换性配电器的校准与不确定度的评定[J]. 计量科学与技术, 2021, 65(10): 31-34. [21] 刘霞美, 吴爱华, 乔玉娥, 等. 精密交流数字电桥准确度分析[J]. 电子测量技术, 2021, 44 (2): 61-64. [22] 任勇峰, 王小兵, 张凯华. 模拟开关通道间串扰机理分析及解决办法[J]. 兵器装备工程学报, 2019, 40(6): 4. [23] 胡永贵, 张家斌. 一种高隔离度视频模拟开关[J]. 微电子学, 1997, 27(5): 342-345. [24] 吴世财, 张梅, 陈红, 等. 一种宽带高隔离度的视频模拟开关设计[J]. 电子与封装, 2020, 20(6): 6. [25] 裘剑敏, 桑帅军, 叶俊浩, 等. 倍频程和分数倍频程滤波器自动检定系统设计[J]. 计量科学与技术, 2021, 65(11): 14-18, 34. [26] 谷静, 杨雁, 陆青, 等. 基于数字比例技术的高精度交流电桥研究[J]. 仪器仪表学报, 2020(7): 9. [27] 苏腾, 郭敏, 刘贵斌, 等. 信号源端口电压驻波比测量方法研究[J]. 计量科学与技术, 2022, 66(7): 33-37. [28] Seron O, Djordjevic S, Budovsky I, et al. Precision acdc transfer measurements with a Josephson waveform synthesizer and a buffer amplifier[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 61(1): 198-204. [29] Mašláň S, Šíra M, Skalická T. Precision buffer with low input capacitance[C] IEEE, 2018. [30] 杨雁, 黄璐, 王维, 等. NIM新一代二端对电容电桥装置[J]. 计量学报, 2020, 41(3): 284-289.