留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧锁喷泉钟小型化光学系统研究

杜超 宋文霞 陈伟亮 刘昆 郑发松 戴少阳 左娅妮 房芳

杜超,宋文霞,陈伟亮,等. 紧锁喷泉钟小型化光学系统研究[J]. 计量科学与技术,2023, 67(7): 40-44 doi: 10.12338/j.issn.2096-9015.2023.0190
引用本文: 杜超,宋文霞,陈伟亮,等. 紧锁喷泉钟小型化光学系统研究[J]. 计量科学与技术,2023, 67(7): 40-44 doi: 10.12338/j.issn.2096-9015.2023.0190
DU Chao, SONG Wenxia, CHEN Weiliang, LIU Kun, ZHENG Fasong, DAI Shaoyang, ZUO Yani, FANG Fang. Investigation on Miniaturized Optical System for Rapid Steering Fountain Clock[J]. Metrology Science and Technology, 2023, 67(7): 40-44. doi: 10.12338/j.issn.2096-9015.2023.0190
Citation: DU Chao, SONG Wenxia, CHEN Weiliang, LIU Kun, ZHENG Fasong, DAI Shaoyang, ZUO Yani, FANG Fang. Investigation on Miniaturized Optical System for Rapid Steering Fountain Clock[J]. Metrology Science and Technology, 2023, 67(7): 40-44. doi: 10.12338/j.issn.2096-9015.2023.0190

紧锁喷泉钟小型化光学系统研究

doi: 10.12338/j.issn.2096-9015.2023.0190
基金项目: 国家市场监督管理总局科技计划项目(2022MK174);中国计量科学研究院基本科研业务费重点领域项目子课题(AKYZD2201-2)。
详细信息
    作者简介:

    杜超(1987-),辽宁石油化工大学在读研究生,研究方向:激光冷却与原子操控,邮箱:duchao3958@163.com

  • 中图分类号: TB939

Investigation on Miniaturized Optical System for Rapid Steering Fountain Clock

  • 摘要: 紧锁喷泉钟是实现紧驾驭氢钟守时的频率基准装置,为适应守时要求,需要提升紧锁喷泉钟运行可靠性和稳定度。光学系统作为其最脆弱的系统组成,易受温度等环境因素的影响,导致原子云温度、原子数波动,恶化其频率稳定度。通过降低光高、减少光程、减少弹性调节架、合理布局光路,给出一种运用于紧锁喷泉钟的小型化光学系统。该系统利用波片偏振分光镜组合、竖置声光调制器、猫眼双次通过声光调制器等新设计,将所有光路装置集成在一块400 mm×600 mm的标准25 mm孔距光学平板上。利用泡沫包裹整个光学系统进行温度波动测试,当温度变化12 ℃时,其最长光路的光纤后光功率波动小于6.6%,有效提升了喷泉钟光学系统的紧凑性和稳定性。该小型化光学系统运用到紧锁铷喷泉钟上,实现了天原子波动数5.28%,喷泉钟频率天稳定度5.57E-16。
  • 图  1  HP旋转组合模块

    Figure  1.  Hp rotating combination module integrating half wave plate and polarizing beam splitter

    图  2  竖置声光调制器

    Figure  2.  Vertical acousto-optic modulator

    图  3  猫眼双次通过声光调制模块

    Figure  3.  Double-pass AOM modulator

    图  4  光路原理图

    Figure  4.  Schematic of optical path

    图  5  温度、功率随时间的变化

    Figure  5.  Temperature and optical power variations over time

    图  6  原子荧光信号

    Figure  6.  Atomic fluorescent signal

    图  7  紧锁铷喷泉钟频率稳定度

    Figure  7.  Frequency stability of rapid steering rubidium fountain clock

  • [1] 王义遒. 原子的激光冷却与陷俘[M]. 北京: 北京大学出版社, 2007: 342-343.
    [2] Chu S, Hollberg, L, Bjorkholm J E, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Physical Review Letters, 1985(55): 48-51.
    [3] Metcalf H J , Straten P V D . Laser Cooling and Trapping[M]. Berlin : Springer: 71-175.
    [4] Aspect A, Arimondo E, Kaiser R, et al. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping[J]. Physical Review Letters, 1988, 61(7): 826-829. doi: 10.1103/PhysRevLett.61.826
    [5] Lett P. D. , Phillips W. D. , Rolston S. L. , et al. , Optical molasses[J]. Journal of Optical Society of America B, 1989, 6(11): 2084-2107.
    [6] Ramsey N F. A Molecular Beam Resonance Method with Separated Oscillating Fields[J]. Phys. Rev. , 1950, 78(6): 695-699. doi: 10.1103/PhysRev.78.695
    [7] Haroche S, Brune M, Raimond J M. Atomic clocks for controlling light fields[J]. Physics Today, 2013, 66(1): 27-32. doi: 10.1063/PT.3.1856
    [8] 翟造成, 张为群, 蔡勇. 原子钟基本原理与时频测量技术[M]. 上海: 上海科技文献出版社, 2009.
    [9] Weyers S, Bauch A, Hubner U, et al. First performance results of PTB’s atomic caesium fountain and a study of contributions to its frequency instability[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2000, 47(2): 432-437. doi: 10.1109/58.827431
    [10] Clarion A, Laurent P, Stantarelli G, et al. A cesium fountain frequency standard: preliminary results[J]. IEEE Transactions on Instrumentation and Measurement, 1995, 44(2): 128-131. doi: 10.1109/19.377790
    [11] Gerginov V, Nemitz N, Weyers S, et al. Uncertainty evaluation of the caesium fountain clock PTB-CSF2[J]. Metrologia, 2010, 47(1): 65-79. doi: 10.1088/0026-1394/47/1/008
    [12] Guéna J, Abgrall M, Rovera D, et al. Progress in atomic fountains at LNE-SYRTE[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2012, 59(3): 391-409.
    [13] Szymaniec K, Park S E, Marra G, et al. First accuracy evaluation of the NPL-CsF2 primary frequency standard[J]. Metrologia, 2010, 47: 363-376. doi: 10.1088/0026-1394/47/4/003
    [14] Levi F, Calonico D, Calosso C E, et al. Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain[J]. Metrologia, 2014, 51(3): 270-284. doi: 10.1088/0026-1394/51/3/270
    [15] Fang F, Li M S, Lin P W, et al. NIM5 Cs fountain clock and its evaluation[J]. Metrologia, 2015, 52(4): 454-468. doi: 10.1088/0026-1394/52/4/454
    [16] 阮军, 王叶兵, 常宏, 等. 时间频率基准装置的研制现状[J]. 物理学报, 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [17] 阮军, 王心亮, 刘丹丹, 等. 铯原子喷泉钟NTSC-F1研制进展[J]. 时间频率学报, 2016(3): 138-149. doi: 10.13875/j.issn.1674-0637.2016-03-0138-12
    [18] Blinov I Y, Boiko A I, Domnin Y S, et al. Budget of uncertainties in the cesium frequency Frame of fountain type[J]. Measurement Techniques, 2017, 60(1): 30-36. doi: 10.1007/s11018-017-1145-z
    [19] Jallageas A, Devenoges L, Petersen M, et al. First uncertainty evaluation of the FoCS-2 primary frequency standard[J]. Metrologia, 2018, 55(3): 366-385. doi: 10.1088/1681-7575/aab3fa
    [20] Bauch A, Weyers S, Piester D, et al. Generation of UTC(PTB) as a fountain-clock based time scale[J]. Metrologia, 2012, 49(3): 180. doi: 10.1088/0026-1394/49/3/180
    [21] Rovera G D, Bize S, Chupin B, et al. UTC(OP) based on LNE-SYRTE atomic fountain primary frequency standards[J]. Metrologia, 2016, 53(3): S81-S88. doi: 10.1088/0026-1394/53/3/S81
    [22] Bandi T, Affolderbach C, Calosso C E, et al. High-performance laser-pumped rubidium frequency standard for satellite navigation[J]. Electronics Letters, 2011, 47(12): 698-699. doi: 10.1049/el.2011.0389
    [23] McGrew W F, Zhang X, Leopardi H, et al. Towards adoption of an optical second: Verifying optical clocks at the SI limit[J]. Optica, 2019, 6(4): 448-454. doi: 10.1364/OPTICA.6.000448
    [24] Wolf P, Chapelet F, Bize S, et al. Cold atom clock test of Lorentz invariance in the matter sector[J]. Physical Review Letters, 2006, 96(6): 060801. doi: 10.1103/PhysRevLett.96.060801
    [25] Chen W L, Fang F, Liu K, et al. , Development of Rb fountain clock for time keeping[J]. Frontiers Phys. , 2022, 2022: 796.
    [26] 曾德灵, 陈静, 郭芮君, 等. 钟组守时性能分析[J]. 计量科学与技术, 2022, 66(4): 114-119, 62.
    [27] PEIL S, HANSSEN J, SWANSON T B, et al. The USNO rubidium fountains[J]. Journal of Physics: Conference Series, 2016(723): 012004.
    [28] 房芳, 张爱敏, 林弋戈, 等. 时间: 天文时-原子秒-基于常数重新定义秒[J]. 中国科学: 物理学 力学 天文学, 2021, 51(7): 105-115.
    [29] 房芳, 张爱敏, 李天初. 时间: 从天文时到原子秒[J]. 计量技术, 2019(5): 7-10.
    [30] 陈伟亮, 房芳, 袁小迪, 等. NIM6铯喷泉钟背景气体碰撞频移的评估[J]. 计量技术, 2020(5): 11-13, 6.
  • 加载中
图(7)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  56
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-16
  • 录用日期:  2023-08-31
  • 修回日期:  2023-09-01
  • 网络出版日期:  2023-09-08
  • 刊出日期:  2023-07-18

目录

    /

    返回文章
    返回