留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定度至E-5量级的微牛级力值计量装置研究

张凯 白洋 张智敏

张凯,白洋,张智敏. 不确定度至E-5量级的微牛级力值计量装置研究[J]. 计量科学与技术,2023, 67(7): 34-39, 33 doi: 10.12338/j.issn.2096-9015.2023.0194
引用本文: 张凯,白洋,张智敏. 不确定度至E-5量级的微牛级力值计量装置研究[J]. 计量科学与技术,2023, 67(7): 34-39, 33 doi: 10.12338/j.issn.2096-9015.2023.0194
ZHANG Kai, BAI Yang, ZHANG Zhimin. An Instrument for Micro-Newton Force Measurement with Uncertainty in E-5[J]. Metrology Science and Technology, 2023, 67(7): 34-39, 33. doi: 10.12338/j.issn.2096-9015.2023.0194
Citation: ZHANG Kai, BAI Yang, ZHANG Zhimin. An Instrument for Micro-Newton Force Measurement with Uncertainty in E-5[J]. Metrology Science and Technology, 2023, 67(7): 34-39, 33. doi: 10.12338/j.issn.2096-9015.2023.0194

不确定度至E-5量级的微牛级力值计量装置研究

doi: 10.12338/j.issn.2096-9015.2023.0194
基金项目: 中国计量科学研究院重点领域项目(AKYZD2005);中国计量科学研究院基本科研业务费项目(AKYCX2302)。
详细信息
    作者简介:

    张凯(1989-),中国计量科学研究院助理研究员,研究方向:微纳力值计量与微悬臂刚度校准,邮箱:zhang-kai@nim.ac.cn

    通讯作者:

    白洋(1988-),中国计量科学研究院副研究员,研究方向:千克量子化定义与复现,邮箱:baiyang@nim.ac.cn

  • 中图分类号: TB931

An Instrument for Micro-Newton Force Measurement with Uncertainty in E-5

  • 摘要: 微牛级力值的测量技术广泛应用于空间探测、生物材料分析与微纳制造等领域的研究。基于静电力天平原理,设计并搭建了一套用于微牛级力值测量的装置,针对前期研究中测量装置的铅垂向刚度过大和圆柱形电容器同轴度对准误差较大的问题,通过优化设计四边形柔性枢轴的结构降低了系统在铅垂向的刚度,提升了静电力天平的力值分辨力,并基于圆柱形电容器的电容特性实现了对内、外电极同轴度的校准。经过实验测量,设计的微牛级力值计量装置具备了将100 μN力值的测量不确定度控制在E-5量级的能力。此项研究成果将为微牛级力值测量基准装置的建立和微牛级力值量传方法的研究做出重要贡献。
  • 图  1  静电力天平测量装置简图

    Figure  1.  Schematic of the electrostatic force balance measurement device

    图  2  静电力天平装置中四边形柔性枢轴结构三维图

    Figure  2.  3D diagram of quadrilateral flexible pivots structure in the electrostatic force balance device

    图  3  内、外电极径向偏移量和倾斜角对电容梯度的影响

    Figure  3.  Influence of radial offset and tilt angle of inner and outer electrodes on capacitance gradient

    图  4  静电力天平装置实物图

    Figure  4.  Physical model of the electrostatic force balance device

    图  5  激光干涉仪与电容电桥的稳定性实验结果

    Figure  5.  Experimental results on the stability of laser interferometer and capacitance bridge

    图  6  圆柱形电容器同轴对准结果

    Figure  6.  Results of cylindrical capacitor coaxial alignment

    图  7  电容梯度的分散性与重复性实验结果

    Figure  7.  Experimental results on dispersion and repeatability of capacitance gradient measurements

    图  8  静电力天平的刚度测量结果

    Figure  8.  Measurement results of stiffness in the designed electrostatic force balance

    图  9  力值测量实验中电压控制模式和相应的位移变化

    Figure  9.  Voltage-controlled mode and corresponding displacement variation in force measurement experiment

    图  10  30次连续测力实验结果

    Figure  10.  Results of 30 consecutive force measurement experiments

    表  1  10 mg砝码质量与重力加速度的校准结果

    Table  1.   Calibration results of 10 mg weight with gravitational acceleration

    砝码质量重力加速度重力值
    10.0019 mg9.8012 m/s298.0306 μN
    下载: 导出CSV

    表  2  10 mg砝码力值测量不确定度

    Table  2.   Uncertainty budget in the measurement of 10 mg weight force

    不确定度来源类别不确定度分量
    电容电桥B5.00E-7
    激光干涉仪B1.00E-8
    电压源B2.50E-5
    力值分辨力B7.20E-6
    电容梯度重复性A1.72E-5
    同轴度B1.25E-5
    力值重复性A6.24E-5
    10 mg砝码力值测量的合成标准不确定度(k=1)7.09E-5
    下载: 导出CSV
  • [1] DANDAVINO S, ATAMAN C, RYAN C N, et al. Microfabricated electrospray emitter arrays with integrated extractor and accelerator electrodes for the propulsion of small spacecraft[J]. Journal of Micromechanics and Microengineering, 2014, 24(7): 075011. doi: 10.1088/0960-1317/24/7/075011
    [2] SONI J, ROY S. Design and characterization of a nano-Newton resolution thrust stand[J]. Review of Scientific Instruments, 2013, 84(9): 095103. doi: 10.1063/1.4819252
    [3] WEI Y, XU Q, BEUTEL T, et al. Cell manipulation system based on a self-calibrating silicon micro force sensor providing capillary status monitoring[J]. IEEE Sensors Journal, 2012, 12(10): 3075-3081. doi: 10.1109/JSEN.2012.2206804
    [4] PRUCHNIK B, ORłOWSKA K, ŚWIADKOWSKI B, et al. Microcantilever-based current balance for precise measurement of the photon force[J]. Scientific Reports, 2023, 13(1): 466. doi: 10.1038/s41598-022-27369-3
    [5] MARTÍNEZ-MARTÍN D, FLäSCHNER G, GAUB B, et al. Inertial picobalance reveals fast mass fluctuations in mammalian cells[J]. Nature, 2017, 550(7677): 500-505. doi: 10.1038/nature24288
    [6] DANZMANN K. LISA mission overview[J]. Advances in Space Research, 2000, 25(6): 1129-1136. doi: 10.1016/S0273-1177(99)00973-4
    [7] WANG A, WU H, TANG H, et al. Development and testing of a new thrust stand for micro-thrust measurement in vacuum conditions[J]. Vacuum, 2013, 91: 35-40. doi: 10.1016/j.vacuum.2012.10.013
    [8] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测 “太极计划” 及 “太极 1 号” 在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10.
    [9] GAO W, LIU C, LIU T, et al. An area-variant type MEMS capacitive sensor based on a novel bionic swallow structure for high sensitive nano-indentation measurement[J]. Measurement, 2022, 200: 111634. doi: 10.1016/j.measurement.2022.111634
    [10] PAYNE C J, RAFII-TARI H, MARCUS H J, et al. Hand-held microsurgical forceps with force-feedback for micromanipulation[C]. 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 284-289.
    [11] 李正坤, 白洋, 许金鑫, 等. 中国计量院在千克重新定义方面的工作和贡献[J]. 计量技术, 2019(5): 28-33.
    [12] KIM M S, CHOI J H, KIM J H, et al. Accurate determination of spring constant of atomic force microscope cantilevers and comparison with other methods[J]. Measurement, 2010, 43(4): 520-526. doi: 10.1016/j.measurement.2009.12.020
    [13] GEORGAKAKI D, MITRIDIS S, SAPALIDIS A A, et al. Calibration of tapping AFM cantilevers and uncertainty estimation: Comparison between different methods[J]. Measurement, 2013, 46(10): 4274-4281. doi: 10.1016/j.measurement.2013.08.010
    [14] 陈庆超. AFM 微悬臂梁法向弹性系数标定技术[D]. 天津: 天津大学, 2012.
    [15] BURNHAM N A, CHEN X, HODGES C S, et al. Comparison of calibration methods for atomic-force microscopy cantilevers[J]. Nanotechnology, 2002, 14(1): 1.
    [16] STAMBAUGH C, SHAKEEL H, LITORJA M, et al. Linking mass measured by the quartz crystal microbalance to the SI[J]. Metrologia, 2020, 57(2): 025002. doi: 10.1088/1681-7575/ab54a5
    [17] JABBOUR Z J, YANIV S L. The kilogram and measurements of mass and force[J]. Journal of Research of the National Institute of Standards and Technology, 2001, 106(1): 25. doi: 10.6028/jres.106.003
    [18] STOCK M. Watt Balance Experiments for the Determination of the Planck Constant and the Redefinition of the Kilogram[J]. Metrologia, 2013, 50(1): R1-R16. doi: 10.1088/0026-1394/50/1/R1
    [19] 张忠华, 李世松. 质量量子标准研究的新进展[J]. 仪器仪表学报, 2013, 34(9): 1921-1926. doi: 10.19650/j.cnki.cjsi.2013.09.001
    [20] 白洋, 鲁云峰, 廖福剑, 等. 能量天平激光干涉测量系统闲区长度测量方法研究[J]. 计量科学与技术, 2022, 66(4): 34-39.
    [21] GORDEN A S, JULIAN S, JOHN A K, et al. Milligram mass metrology using an electrostatic force balance[J]. Metrologia, 2016, 53(2): A86-A94.
    [22] SCHLAMMINGER S, HADDAD D, SEIFERT F, et al. Determination of the Planck constant using a watt balance with a superconducting magnet system at the National Institute of Standards and Technology[J]. Metrologia, 2014, 51(2): S15. doi: 10.1088/0026-1394/51/2/S15
    [23] STEINER R L, WILLIAMS E R, LIU R, et al. Uncertainty Improvements of the NIST Electronic Kilogram[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 592-596. doi: 10.1109/TIM.2007.890590
    [24] SIENKNECHT V, FUNCK T. Realization of the SI unit volt by means of a voltage balance[J]. Metrologia, 1986, 22(3): 209. doi: 10.1088/0026-1394/22/3/018
    [25] NESTEROV V, MUELLER M, FRUMIN L L, et al. A new facility to realize a nanonewton force standard based on electrostatic methods[J]. Metrologia, 2009, 46(3): 277. doi: 10.1088/0026-1394/46/3/016
    [26] LEACH R K, CLAVERLEY J, GIUSCA C, et al. Advances in engineering nanometrology at the National Physical Laboratory[J]. Measurement Science and Technology, 2012, 23(7): 074002. doi: 10.1088/0957-0233/23/7/074002
    [27] KIM M S, PRATT J R. SI traceability: Current status and future trends for forces below 10 microNewtons[J]. Measurement, 2010(43): 169-182.
    [28] 刘明, 林玉池, 郑叶龙, 等. 利用静电场原理复现微纳力值的实验研究[J]. 传感技术学报, 2012, 25(1): 17-25.
    [29] 张国强, 赵美蓉, 蔡雪. 电容法微力测量中轴偏对电容梯度的影响[J]. 电子测量与仪器学报, 2015, 29(1): 14-20. doi: 10.13382/j.jemi.2015.01.002
    [30] 王越, 白洋, 李正坤. 能量天平高灵敏度力传感装置研究[J]. 计量科学与技术, 2023, 67(4): 11-17. doi: 10.12338/j.issn.2096-9015.2022.0288
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  51
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-21
  • 录用日期:  2023-09-14
  • 修回日期:  2023-09-21
  • 网络出版日期:  2023-09-27
  • 刊出日期:  2023-07-18

目录

    /

    返回文章
    返回