留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
张旭东,王方彪,温梓彤,等. 端度计量[J]. 计量科学与技术,2024, 68(2): 88-94 doi: 10.12338/j.issn.2096-9015.2023.0233
引用本文: 张旭东,王方彪,温梓彤,等. 端度计量[J]. 计量科学与技术,2024, 68(2): 88-94 doi: 10.12338/j.issn.2096-9015.2023.0233
ZHANG Xudong, WANG Fangbiao, WEN Zitong, GAO Hongtang, LIU Xiangbin. End Standards Measurement[J]. Metrology Science and Technology, 2024, 68(2): 88-94. doi: 10.12338/j.issn.2096-9015.2023.0233
Citation: ZHANG Xudong, WANG Fangbiao, WEN Zitong, GAO Hongtang, LIU Xiangbin. End Standards Measurement[J]. Metrology Science and Technology, 2024, 68(2): 88-94. doi: 10.12338/j.issn.2096-9015.2023.0233

端度计量

doi: 10.12338/j.issn.2096-9015.2023.0233
基金项目: 中央公益类科研机构的质量技术基础能力建设经费(ANL2307,ANL1904)。
详细信息
    作者简介:

    张旭东(1977-),中国计量科学研究院副研究员,研究方向:几何量计量及精密测量技术,邮箱:zhxd@nim.ac.cn

  • 中图分类号: TB921

End Standards Measurement

  • 摘要: 端度计量是几何量计量的一项基础工作,国内外对量块、量块对和台阶规端度标准器的高精度测量技术开展了大量的研究。量块的测量方法分为比较法和绝对干涉法。比较法介绍了基于高定位重复性测头和干涉比较技术的高精度量块比较仪,其测量不确定度0.04 μm+0.4×10−6L。绝对干涉法介绍了量块绝对干涉测量的测量原理及国内干涉测量的发展历程。绝对干涉法主要包括单端和双端量块干涉测量方法,相应地研制了需要研合测量的单端移相量块干涉仪和无需研合的双端移相量块干涉仪,其测量不确定度达到15 nm+0.15×10−6L。以移相量块干涉仪为基础开展了量块对和台阶规的测量方法研究。为实现量块对的高精度测量,通过不确定度分析和实验验证获得并规定了单端移相量块干涉仪测量量块对的限定测量条件。采用移相量块干涉仪测量量块对长度差的测量不确定度不超过10 nm。采用单端移相量块干涉仪可以实现台阶规的高精度测量,通过对干涉条纹的分析计算,台阶中心高度测量不确定度达到(0.01~0.1) µm。为满足超高精度的长度测量的需求,研究超高精度干涉测量技术是端度计量的发展趋势。已有的单端和双端移相干涉技术为基于全新设计的超高精度干涉仪的研制奠定了基础,从而实现纳米级测量不确定度的端度测量。
  • 图  1  常用量块比较仪

    Figure  1.  Commonly used gauge block comparator

    图  2  高精度小量块干涉比较仪

    Figure  2.  High-precision short gauge block comparator

    图  3  高精度大量块干涉比较仪

    Figure  3.  High-precision long gauge block comparator

    图  4  单端量块干涉测量示意图

    Figure  4.  Schematic diagram of single-ended gauge block interferometry

    图  5  量块干涉条纹示意图

    Figure  5.  Schematic of interference fringes in gauge blocks

    图  6  改造后的柯氏量块干涉仪

    Figure  6.  Modified Koster gauge block interferometer

    图  7  (0.1~100) mm单端移相量块干涉仪

    Figure  7.  (0.1~100) mm single-ended phase shift gauge block interferometer

    图  8  (100~1000) mm单端移相量块干涉仪

    Figure  8.  (100~1000) mm single-ended phase shift gauge block interferometer

    图  9  双端量块干涉测量示意图

    Figure  9.  Schematic diagram of double-ended gauge block interferometry

    图  10  双端移相量块干涉仪

    Figure  10.  Double-ended phase shift gauge block interferometer

    图  11  量块对实物图

    Figure  11.  Physical representation of gauge block pairs

    图  12  台阶规示意图

    Figure  12.  Schematic diagram of a step height gauge

    图  13  台阶规干涉条纹

    Figure  13.  Interference fringes of a step height gauge

  • [1] 张旭东, 刘香斌, 吴月艳. 量块测量技术进展[J]. 计量学报, 2017, 38(S1): 1-5.
    [2] 张旭东, 刘香斌, 吴月艳. 高精度双测头量块比较仪的研究[J]. 计量学报, 2010, 031(0z2): 131-134. doi: 10.3969/j.issn.1000-1158.2010.z2.31
    [3] BUCHTA Z, SARBORT M, CIZEK M, et al. System for automatic gauge block length measurement optimized for secondary length metrology[J]. Precision Engineering, 2017, 49: 322-331. doi: 10.1016/j.precisioneng.2017.03.002
    [4] Meiners-Hagen K, Schodel R, Pollinger F, et al. Multi-Wavelength Interferometry for Length Measurements Using Diode Lasers[J]. Measurement science review, 2009, 9(1): 16-26.
    [5] Bitou Y, Hirai A, Yoshimori H, et al. Gauge block interferometer using three frequency-stabilized lasers[J]. SPIE, 2001, 68(4): 542-547.
    [6] J Diz-Bugarin, BV Dorrio, Blanco J, et al. Design of an interferometric system for gauge block calibration[J]. Optical Engineering, 2013, 52(4): 5601.
    [7] Lassila A, Byman V. Wave front and phase correction for double-ended gauge block interferometry[J]. Metrologia, 2015, 52(5): 708 doi: 10.1088/0026-1394/52/5/708
    [8] Abdelaty A, Walkov A, Franke P, et al. Challenges on double ended gauge block interferometry unveiled by the study of a prototype at PTB[J]. Metrologia, 2012, 49(49): 307-314.
    [9] Abdel-Maaboud N F. Automated Contactless Gauge Block Interferometer[J]. Journal of Physical Science, 2017, 28(1): 87-98. doi: 10.21315/jps2017.28.1.7
    [10] Bitou Y, Hosoya H, Mashimo K. Uncertainty reducing method for the reference standards in gauge block comparator calibration[J]. Measurement, 2014, 50: 293-296. doi: 10.1016/j.measurement.2014.01.001
    [11] 刘香斌, 陈建军, 吴月艳, 等. 量块比较测量的不确定度评定[J]. 计量技术, 2015(4): 74-77.
    [12] 何晓延, 权李方, 王兴东. 测长机检定四等大尺寸量块测量不确定度分析[J]. 计量与测试技术, 2013, 40(3): 60-61. doi: 10.3969/j.issn.1004-6941.2013.03.031
    [13] Decker J E, Ulrich A, Pekelsky J R. Uncertainty of Gauge Block Calibration by Mechanical Comparison: A Worked Example for Like Materials[J]. Ncsli Measure, 2008, 3(4): 30-42. doi: 10.1080/19315775.2008.11721445
    [14] 张旭东, 刘香斌, 叶孝佑, 等. 接触式定位控制传感器的研究[J]. 计量学报, 2009, 30(Z1): 189-191. doi: 10.3969/j.issn.1000-1158.2009.z1.049
    [15] Byman V, Lassila A. MIKES' primary phase stepping gauge block interferometer[J]. Measurement Science & Technology, 2015, 26(8): 084009.
    [16] 邵宏伟, 刘香斌, 王雁, 等. 一等大量块(125~1000 mm)检定装置[J]. 计量学报, 2004, 25(3): 198-202. doi: 10.3321/j.issn:1000-1158.2004.03.002
    [17] 张旭东, 刘香斌, 党爱华, 等. 基于热电偶的温度测量系统的不确定度[C]. 中国计量测试学会几何量专业委员会年会, 2006.
    [18] 张旭东, 刘香斌, 吴月艳, 等. 新型一等大量块标准装置的研制[J]. 计量学报, 2014, 35(6A): 67-71. doi: 10.3969/j.issn.1000-1158.2014.z1.015
    [19] 张旭东, 刘香斌, 王世婕, 等. 新型一等移相量块干涉仪的研制[J]. 计量学报, 2017, 38(3): 257-261. doi: 10.3969/j.issn.1000-1158.2017.03.01
    [20] Kruger O, Hungwe F, Farid N, et al. The design of a double ended interferometer (DEI)[J]. International Journal of Metrology & Quality Engineering, 2014, 5(4): 335-350.
    [21] Y ISHII, S SEINO. New method for interferometric measurement of gauge blocks without wringing onto a platen[J]. Metrologia, 1998, 35(2): 67-73. doi: 10.1088/0026-1394/35/2/1
    [22] Lassila, A, Byman, et al. Wave front and phase correction for double-ended gauge block interferometry[J]. Metrologia: International Journal of Scientific Metrology, 2015, 52(5): 708-716.
    [23] Godina A, Acko B, Druzovec M. New approach to uncertainty evaluation in the calibration of gauge block comparators[J]. Measurement, 2007, 40(6): 607-614. doi: 10.1016/j.measurement.2006.09.010
    [24] 吴月艳, 张旭东, 刘香斌. 一种减小比较仪溯源标准不确定度的新方法[J]. 计量学报, 2008, B09(Z1): 154-156.
    [25] Oliveira W, França R S. A new Automated gauge block pair length difference calibration and associated uncertainty sources[C]. 3rd International Congress on Mechanical Metrology, 2015.
    [26] Hibino K, Tani Y, Takatsuji T, et al. Absolute interferometry for surface shapes with large steps by wavelength tuning with a mechanical phase shift[C]. Conference on Interferometry. National Institute of Advanced Industrial Science, Technology (AIST), Tsukuba, 305-8564 Japan, 2006.
    [27] Schodel R, Walkov A, Zenker M, et al. A new Ultra Precision Interferometer for absolute length measurements down to cryogenic temperatures[J]. Measurement Science & Technology, 2012, 23(9): 1425-1437.
    [28] Dongxu WU, Fengzhou FANG. Development of surface reconstruction algorithms for optical interferometric measurement[J]. Frontiers of Mechanical Engineering, 2021, 16(1): 1-31 doi: 10.1007/s11465-020-0602-6
    [29] Bartl G, Schodel R. Scanning phase shift interferometry in length measurement[EB/OL]. [2013-06-03].https://oar.ptb.de/files/download/810.20130620G.pdf.
    [30] Schodel R, Fischedick M. Proposed extension of double-ended gauge block interferometers for measuring spheres[J]. Measurement Science & Technology, 2021, 32(8): 084010-1-084010-11.
  • 加载中
图(13)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  54
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-17
  • 录用日期:  2023-11-10
  • 修回日期:  2023-12-01
  • 网络出版日期:  2023-12-08
  • 刊出日期:  2024-02-18

目录

    /

    返回文章
    返回