留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柴油化学组成与主要理化性质的相互作用关系概述

丁超民 张正东 杜彪 王桂萱 刘帆 李琪 李轲

丁超民,张正东,杜彪,等. 柴油化学组成与主要理化性质的相互作用关系概述[J]. 计量科学与技术,待出版. doi: 10.12338/j.issn.2096-9015.2023.0259
引用本文: 丁超民,张正东,杜彪,等. 柴油化学组成与主要理化性质的相互作用关系概述[J]. 计量科学与技术,待出版. doi: 10.12338/j.issn.2096-9015.2023.0259
DING Chaomin, ZHANG Zhengdong, DU Biao, WANG Guixuan, LIU Fan, LI Qi, LI Ke. Overview of the Interaction Between the Chemical Composition and the Main Physicochemical Properties of Diesel Fuel[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2023.0259
Citation: DING Chaomin, ZHANG Zhengdong, DU Biao, WANG Guixuan, LIU Fan, LI Qi, LI Ke. Overview of the Interaction Between the Chemical Composition and the Main Physicochemical Properties of Diesel Fuel[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2023.0259

柴油化学组成与主要理化性质的相互作用关系概述

doi: 10.12338/j.issn.2096-9015.2023.0259
基金项目: 国家市场监督管理总局市场监管技术保障专项项目(2023YJ03);国家市场监督管理总局科技计划项目(2021MK153);中国计量院基本科研业务费项目(AKYZZ2131、AKYZZ2332)。
详细信息
    作者简介:

    丁超民(1998-),大连海事大学硕士研究生,研究方向:光谱快速检测及计量技术研究,邮箱:dingchaomin1998@163.com

    通讯作者:

    李轲(1990-),中国计量科学研究院副研究员,研究方向:光谱快速检测及计量技术研究,邮箱:like@nim.ac.cn

Overview of the Interaction Between the Chemical Composition and the Main Physicochemical Properties of Diesel Fuel

  • 摘要: 为降低柴油在使用过程中对环境的污染,并且推动汽车行业向更环保、更高效的方向发展,我国柴油质量已经逐步完成从国Ⅳ到国Ⅵ的升级,标准对柴油的品质要求愈来愈严格。质量的升级对车用柴油的理化性质产生了直接的影响,而柴油的化学组成又决定其理化性质。因此探究柴油化学组成与理化性质的关系,既可帮助燃油生产商更合理的优化柴油配方以满足更高的质量要求,亦可帮助用户结合自身需求选择柴油产品以提高柴油利用率并减少环境污染。综述了柴油的化学组成与密度、十六烷值、润滑性、低温流动性、含硫化合物、含氮化合物以及脂肪酸甲酯的内在关系,可以为柴油调和与质量升级提供理论基础,亦能够为能源可持续发展和环境保护提供有益参考。
  • 图  1  FAME的分类

    Figure  1.  Classification of FAME

    表  1  生物柴油中常见的FAME种类及含量

    Table  1.   The common types and contents of FAME in biodiesel

    生物柴油月桂酸肉豆蔻酸棕榈酸硬脂酸油酸亚油酸亚麻酸
    C12:0C14:0C16:0C18:0C18:1C18:2C18:3
    大豆0.10.210.53.823.754.56.3
    麻疯树0.120.113.26.1143.8635.40.3
    油菜籽0.10.21.071.5562.2420.618.72
    米糠0018.82.443.133.20.6
    卡兰贾树0010.66.849.4190.3
    废弃食用油0013424520.2
    鸡脂肪油0022.25.142.519.31
    罗望子种子01.5912.6715.9347.4818.340.63
    下载: 导出CSV

    表  2  FAME对生物柴油性质的影响

    Table  2.   Effect of FAME on the properties of biodiesel

    性质 影响 Ref
    十六烷值 CN与链长、不饱和度以及羟基化程度密切相关。生物柴油的十六烷值随着SFAME含量增加而增加,随着UFAME的含量增加而降低。 [49]
    低温流动性 CFPP则随着长链SFAME的含量和链长的增加而增加,随着UFAME的含量和不饱和度增加而降低。 [50]
    FAME碳链越长、熔点越高,低温性能也就越差。 [51]
    运动黏度 FAME的饱和度越大,相应的运动黏度就越高。 [52]
    热值 热值随着FAME分子量的增加而增加,随着不饱和度的增加而减少。 [53]
    密度 密度随着FAME相对分子量的减少和不饱和度的增加而增加。 [54]
    润滑性 含有杂原子的分子的润滑性:O>N>S>C。
    含氧基团增强润滑性的顺序为:COOH>CHO>OH>COOCH3>C=0>C-O-O。
    [55]
    氧化安定性 不饱和度越高,稳定性越差。 [56]
    下载: 导出CSV
  • [1] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 车用柴油: GB 19147—2016[S]. 北京: 中国标准出版社, 2016.
    [2] 谢仁华. 柴油的储存安定性研究[J]. 石油炼制与化工, 2003, 34(4): 16-21. doi: 10.3969/j.issn.1005-2399.2003.04.004
    [3] 白亚昊, 邹惠玲, 夏攀登,. 基于柴油介电特性快速检测其润滑性的方法研究[J]. 润滑与密封, 2019, 44(1): 129-132.
    [4] 丁立群, 袁晓冰, 刘昌见. 1-甲基萘-正癸烷-1-十四烯-环丁砜体系液液相平衡数据测定及关联[J]. 化工学报, 2019, 70(10): 3899-3905.
    [5] YANG H, RING Z, BRIKER Y, et al. Neural network prediction of cetane number and density of diesel fuel from its chemical composition determined by LC and GC–MS[J]. Fuel, 2002, 81(1): 65-74. doi: 10.1016/S0016-2361(01)00121-1
    [6] WANG Q, LI C, JIA R, et al. Rapid and simultaneous determination of fatty acid methyl esters and polycyclic aromatic hydrocarbons in diesel fuel by high-performance liquid chromatography with a selective backflush strategy[J]. Analytical Letters, 2020, 53(6): 834-843. doi: 10.1080/00032719.2019.1682005
    [7] CORREA S M, ARBILLA G. Aromatic hydrocarbons emissions in diesel and biodiesel exhaust[J]. Atmospheric Environment, 2006, 40(35): 6821-6826. doi: 10.1016/j.atmosenv.2006.05.068
    [8] PAVLOVA A, PETROV S, MILINA R, et al. Determination of polycycloaromatic hydrocarbons in diesel fuel[J]. Chemistry and Technology of Fuels and Oils, 2004, 40(4): 275-278. doi: 10.1023/B:CAFO.0000041228.96056.8b
    [9] MACHAKANUR S, SAVALIA A, BHAKTHAVATSALAM V. Multivariate statistics for summarizing diesel feeds for flammability attributes using comprehensive two-dimensional gas chromatography[J]. Journal of Separation Science, 2021, 44(15): 2941-2949. doi: 10.1002/jssc.202001192
    [10] WEI Y J, ZHANG Y J, ZHU X D, et al. Effects of Diesel Hydrocarbon Components on Cetane Number and Engine Combustion and Emission Characteristics[J]. Applied Sciences-Basel, 2022, 12(7): 1.
    [11] LADOMMATOS N, GOACHER J. Equations for predicting the cetane number of diesel fuels from their physical properties[J]. Fuel, 1995, 74(7): 1083-1093. doi: 10.1016/0016-2361(95)00040-C
    [12] 张永奎, 胡志海, 刘晓欣,. 柴油加氢改质过程烃类反应与十六烷值的关系[J]. 石油学报(石油加工), 2013, 29(3): 376-382.
    [13] IVANOVA L V, KOSHELEV V N, BUROV E A. Influence of the hydrocarbon composition of diesel fuels on their performance characteristics[J]. Petroleum Chemistry, 2014, 54(6): 466-472. doi: 10.1134/S0965544114060061
    [14] BARRA I, KHARBACH M, QANNARI E, et al. Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression[J]. Vibrational Spectroscopy, 2020, 111: 1.
    [15] GRISHIN D. Depressant, antiwear, and antioxidant additives to hydrotreated diesel fuels with low and ultralow sulfur content[J]. Petroleum Chemistry, 2017, 57(10): 813-825. doi: 10.1134/S0965544117100097
    [16] MOZDZEN E C, WALL S W, BYFLEET W D. The no-harm performance of lubricity additives for low sulphur diesel fuels[J]. SAE transactions, 1998, 40: 1496-1503.
    [17] PICHUGIN V F, IVANOVA L V, BUROV E A. Improving the tribotechnical characteristics of metallic pairs in diesel fuel by using additives[J]. Chemistry and Technology of Fuels and Oils, 2013, 49(4): 309-312. doi: 10.1007/s10553-013-0446-4
    [18] WEI D P. The lubricity of diesel fuels[J]. Wear, 1986, 111(2): 217-235. doi: 10.1016/0043-1648(86)90221-8
    [19] 韦淡平. 燃料润滑性的研究 Ⅰ. 柴油组分的磨损性能[J]. 石油学报(石油加工), 1986(3): 79-87.
    [20] 韦淡平. 燃料油润滑性的研究 Ⅱ. 模型化合物试验[J]. 石油学报(石油加工), 1988(1): 90-99.
    [21] 韦淡平. 燃料润滑性的研究 Ⅲ. 柴油的磨损性能[J]. 石油学报(石油加工), 1990(1): 15-19.
    [22] BARBOUR R H, RICKEARD D J, ELLIOTT N G. Understanding diesel lubricity[J]. SAE transactions, 2000, 1: 1556-1566.
    [23] 雒亚东, 凌凤香, 赵国利,. 氧族化合物对柴油润滑性影响的研究[J]. 科学技术与工程, 2014, 14(27): 220-223.
    [24] WåHLIN P, PALMGREN F, VAN DINGENEN R, et al. Pronounced decrease of ambient particle number emissions from diesel traffic in Denmark after reduction of the sulphur content in diesel fuel[J]. Atmospheric Environment, 2001, 35(21): 3549-3552. doi: 10.1016/S1352-2310(01)00066-8
    [25] 刘娟, 王洪国, 廖克俭. 改性活性炭吸附脱除柴油中的硫化物[J]. 应用化工, 2013, 42(1): 102-104,109.
    [26] 殷长龙, 赵会吉, 徐永强, 等. 柴油深度加氢脱硫过程中硫化物转化规律的研究[J]. 中国石油大学学报(自然科学版), 2007, 31(4): 134-138.
    [27] BU J, LOH G, GWIE C G, et al. Desulfurization of diesel fuels by selective adsorption on activated carbons: Competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons[J]. Chemical Engineering Journal, 2011, 166(1): 207-217. doi: 10.1016/j.cej.2010.10.063
    [28] HUA R, LI Y, LIU W, et al. Determination of sulfur-containing compounds in diesel oils by comprehensive two-dimensional gas chromatography with a sulfur chemiluminescence detector[J]. Journal of Chromatography A, 2003, 1019(1-2): 101-109. doi: 10.1016/j.chroma.2003.08.048
    [29] LIANG F Y, LU M M, BIRCH M E, et al. Determination of polycyclic aromatic sulfur heterocycles in diesel particulate matter and diesel fuel by gas chromatography with atomic emission detection[J]. Journal of Chromatography A, 2006, 1114(1): 145-153. doi: 10.1016/j.chroma.2006.02.096
    [30] MA X, SAKANISHI K, MOCHIDA I. Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel[J]. Industrial & Engineering Chemistry Research, 1994, 33(2): 218-222.
    [31] GAO L, LIU P, GU T, et al. Characterization of sulfur compounds in diesel fractions[J]. Journal of Fuel Chemistry and Technology, 2009, 2: 183-188.
    [32] 刘明星, 刘泽龙, 李颖, 等. 固相萃取法/全二维气相色谱-飞行时间质谱测定柴油及其加氢产品中的含硫化合物[J]. 石油炼制与化工, 2020, 51(4): 96-104. doi: 10.3969/j.issn.1005-2399.2020.04.019
    [33] CHENG Y, ZHENG G, WEI C, et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China[J]. Science advances, 2016, 2(12): e1601530. doi: 10.1126/sciadv.1601530
    [34] CHENG X, ZHAO T, FU X, et al. Identification of nitrogen compounds in RFCC diesel oil by mass spectrometry[J]. Fuel Processing Technology, 2004, 85(13): 1463-1472. doi: 10.1016/j.fuproc.2003.10.004
    [35] 杨永坛. 催化柴油中含氮化合物类型分布的气相色谱分析方法[J]. 色谱, 2008, 26(4): 478-483.
    [36] RUI B, CHAI Y, ZHANG C, et al. Fluid catalytic cracking feed hydrotreatment and its impact on the distribution of sulfur and nitrogen compounds in FCC diesel[J]. China Petroleum Processing & Petrochemical Technology, 2015, 17(1): 69.
    [37] 史得军, 陈菲, 梁迎春, 等. 固相萃取/气相色谱-质谱分析催化裂化柴油中的含氮化合物[J]. 分析测试学报, 2018, 37(12): 1490-1494. doi: 10.3969/j.issn.1004-4957.2018.12.015
    [38] ROSSEMYR L I. Cold flow properties and response to cold flow improver of some typical fuel oils[J]. Industrial & Engineering Chemistry Product Research and Development, 1979, 18(3): 227-230.
    [39] LU Y, ZHANG X, YAO G C. Exploration of the function of diesel fuel additives influencing flow[J]. Energy & Fuels, 2011, 25(5): 2115-2118.
    [40] SOLIMAN E A, ELKATORY M R, HASHEM A I, et al. Synthesis and performance of maleic anhydride copolymers with alkyl linoleate or tetra-esters as pour point depressants for waxy crude oil[J]. Fuel, 2018, 211: 535-547. doi: 10.1016/j.fuel.2017.09.038
    [41] XU J, JIANG H, LI T, et al. Effect of comb-type copolymers with various pendants on flow ability of heavy crude oil[J]. Industrial & Engineering Chemistry Research, 2015, 54(19): 5204-5212.
    [42] 姜少华, 周剑鸣, 张玉贞. 柴油正构烷烃含量与其低温性质关系研究[J]. 石油与天然气化工, 2002, 31(5): 243-245,226. doi: 10.3969/j.issn.1007-3426.2002.05.005
    [43] VRABLIK A, VELVARSKA R, STEPANEK K, et al. Rapid models for predicting the low-temperature behavior of diesel[J]. Chemical Engineering & Technology, 2019, 42(4): 735-743.
    [44] KIRGINA M, BOGDANOV I, ALTYNOV A, et al. Studying the impact of different additives on the properties of straight-run diesel fuels with various hydrocarbon compositions[J]. Oil & Gas Science and Technology-Revue D Ifp Energies Nouvelles, 2021, 76: 40.
    [45] NABI M N, MINAMI M, OGAWA H, et al. Attempt and mechanism of ultra low emission and high performance diesel combustion with highly oxygenated fuel.[J]. Transactions of the Japan Society of Mechanical Engineers. Series B, 2000, 66(642): 612-618. doi: 10.1299/kikaib.66.612
    [46] LIAQUAT A, MASJUKI H, KALAM M, et al. Application of blend fuels in a diesel engine[J]. Energy Procedia, 2012, 14: 1124-1133. doi: 10.1016/j.egypro.2011.12.1065
    [47] KUMBHAR V, PANDEY A, SONAWANE C R, et al. Statistical analysis on prediction of biodiesel properties from its fatty acid composition[J]. Case Studies in Thermal Engineering, 2022, 30: 101775. doi: 10.1016/j.csite.2022.101775
    [48] FOLAYAN A J, ANAWE P A L, ALADEJARE A E, et al. Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass[J]. Energy Reports, 2019, 5: 793-806. doi: 10.1016/j.egyr.2019.06.013
    [49] KNOTHE G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters[J]. Fuel Processing Technology, 2005, 86(10): 1059-1070. doi: 10.1016/j.fuproc.2004.11.002
    [50] ZULETA E C, RIOS L A, BENJUMEA P N. Oxidative stability and cold flow behavior of palm, sacha-inchi, jatropha and castor oil biodiesel blends[J]. Fuel Processing Technology, 2012, 102: 96-101. doi: 10.1016/j.fuproc.2012.04.018
    [51] RODRIGUES JR J d A, CARDOSO F d P, LACHTER E R, et al. Correlating chemical structure and physical properties of vegetable oil esters[J]. Journal of the American Oil Chemists' Society, 2006, 83(4): 353-357. doi: 10.1007/s11746-006-1212-0
    [52] GIAKOUMIS E G. A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation[J]. Renewable Energy, 2013, 50: 858-878. doi: 10.1016/j.renene.2012.07.040
    [53] RAMIREZ-VERDUZCO L F, RODRIGUEZ-RODRIGUEZ J E, JARAMILLO-JACOB A D. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition[J]. Fuel, 2012, 91(1): 102-111. doi: 10.1016/j.fuel.2011.06.070
    [54] HOEKMAN S K, BROCH A, ROBBINS C, et al. Review of biodiesel composition, properties, and specifications[J]. Renewable and sustainable energy reviews, 2012, 16(1): 143-169. doi: 10.1016/j.rser.2011.07.143
    [55] KNOTHE G, STEIDLEY K R. Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity[J]. Energy & Fuels, 2005, 19(3): 1192-1200.
    [56] Kumar N. Oxidative stability of biodiesel: Causes, effects and prevention[J]. Fuel, 2017, 190: 328-350. doi: 10.1016/j.fuel.2016.11.001
    [57] 孙鑫源, 李长秀. 全二维气相色谱技术在石油馏分组成分析中的应用研究进展[J]. 石油化工, 2023, 52(7): 1019-1027. doi: 10.3969/j.issn.1000-8144.2023.07.019
    [58] 段为宇, 郭蓉, 刘海龙, 等. 柴油加氢装置长周期运行影响因素及应用[J]. 当代化工, 2023, 52(9): 2210-2213. doi: 10.3969/j.issn.1671-0460.2023.09.041
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03
  • 录用日期:  2023-12-07
  • 修回日期:  2023-12-05
  • 网络出版日期:  2024-01-22

目录

    /

    返回文章
    返回