留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常用测量不确定度评定方法概述与比较

陶猛 任思源 劳嫦娟

陶猛,任思源,劳嫦娟. 常用测量不确定度评定方法概述与比较[J]. 计量科学与技术,待出版 doi: 10.12338/j.issn.2096-9015.2023.0263
引用本文: 陶猛,任思源,劳嫦娟. 常用测量不确定度评定方法概述与比较[J]. 计量科学与技术,待出版 doi: 10.12338/j.issn.2096-9015.2023.0263
TAO Meng, REN Siyuan, LAO Changjuan. Review of Theoretical and Applied Research on Measurement Uncertainty[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2023.0263
Citation: TAO Meng, REN Siyuan, LAO Changjuan. Review of Theoretical and Applied Research on Measurement Uncertainty[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2023.0263

常用测量不确定度评定方法概述与比较

doi: 10.12338/j.issn.2096-9015.2023.0263
基金项目: 国家自然科学基金项目(L2124012)。
详细信息
    作者简介:

    陶猛(1998-),中国计量科学研究院在读研究生,研究方向:国家测量体系,邮箱:13576920014@163.com

    通讯作者:

    劳嫦娟(1983-),中国计量科学研究院高级工程师,研究方向:计量基础理论与NQI应用研究,邮箱:laochj@nim.ac.cn

  • 1注:JCGM(Joint Committee for Guides in Metrology, 即计量学指南联合委员会)由BIPM于1997年成立,主要任务是推广、修订GUM和VIM。

Review of Theoretical and Applied Research on Measurement Uncertainty

  • 摘要: 对测量不确定度理论诞生以来的理论与应用研究进行了系统梳理和回顾。首先,总体介绍了测量不确定度理论的历史沿革。其次概述了几类主流测量不确定度评价方法的基本原理、最新研究应用及其局限性,例如最早发布的GUM方法,该方法主要针对线性或者可近似为线性的测量模型,采用基于标准不确定度传递的方法,是目前最常用的评定方法;基于蒙特卡洛的测量不确定度评定方法及其衍生而来的拟蒙特卡洛法和自适应蒙特卡洛法在处理复杂模型时具有更广泛适用性;以贝叶斯(Bayes)为基础的测量不确定度评定方法在小样本测量中可以充分发挥先验数据的价值,并有良好的表现;此外,还讨论了一些非统计学方法的测量不确定度评定方法,如灰度评定、模糊评定、最大熵和神经网络法等。最后简要总结了各种评定方法,认为随着人工智能技术的发展,在复杂的测量模型和测量环境中应用支持向量机和神经网络等方法前景广阔。
    1)  1注:JCGM(Joint Committee for Guides in Metrology, 即计量学指南联合委员会)由BIPM于1997年成立,主要任务是推广、修订GUM和VIM。
  • [1] 中国计量科学研究院. 测量: 从自然科学到社会科学[M]. 北京: 中国标准出版社, 2021: 5-6.
    [2] Beers Y. Introduction to the theory of error[M]. Addison-Wesley, 1953: 26-27.
    [3] Passaglia E. A Unique institution: The National Bureau of Standards 1950—1969[M]. U. S: Department of Commerce, 1999: 268-292.
    [4] C E. Realistic evaluation of the precision and accuracy of instrument calibration systems.[J]. Journal of Research of the National Bureau of Standards, 1963, 67C: 161-187.
    [5] Dietrich C F. Uncertainty, Calibration and Probability[M]. New York: Halsted Press (Wiley), 1973: 5-6.
    [6] BICH W. Measurement uncertainty: Historical perspective, present status and foreseeable future[J]. New Frontiers for Metrology: From Biology and Chemistry to Quantum and Data Science, 2021, 206-305.
    [7] 倪育才. 实用测量不确定度评定 (第六版)[M]. 中国计量出版社, 2020: 126-127.
    [8] ISO. Guide to the Expression of Uncertainty in Measurement(E)[S]. ISO, 1993.
    [9] BIPM, IEC, IFCC, et al. International vocabulary of metrology — Basic and general concepts and associated terms (VIM)[Z/OL].https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1.
    [10] BIPM, IEC, IFCC, et al. Evaluation of measurement data — Guide to the expression of uncertainty in measurement[Z/OL].https://www.bipm.org/documents/20126/2071204/JCGM\_100\_2008\_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6.
    [11] BIPM, IEC, IFCC, et al. Evaluation of measurement data — Supplement 1 to the “Guide to the expression of uncertainty in measurement” — Propagation of distributions using a Monte Carlo method[Z/OL].https://www.bipm.org/documents/20126/2071204/JCGM\_101\_2008\_E.pdf/325dcaad-c15a-407c-1105-8b7f322d651c.
    [12] BIPM, IEC, IFCC, et al. Evaluation of measurement data — Supplement 2 to the “Guide to the expression of uncertainty in measurement” — Extension to any number of output quantities[Z/OL].https://www.bipm.org/documents/20126/2071204/JCGM\_102\_2011\_E.pdf/6a3281aa-1397-d703-d7a1-a8d58c9bf2a5.
    [13] BIPM. GUM Newsletters[EB/OL]. [2023-08-23].https://www.bipm.org/en/committees/jc/jcgm/wg/jcgm-wg1-gum/newsletters.
    [14] 国家质量技术监督局. 测量不确定度评定与表示: JJF1059—1999 [S]. 北京: 中国标准出版社, 1999.
    [15] 北京市技术监督局. 测量误差及数据处理: JJG 1027—1991 [S]. 北京: 中国标准出版社, 1991.
    [16] 管西娟, 赵越, 侯蕊, 等. 建立计量标准过程中的不确定度分析[J]. 上海计量测试, 2019, 46(4): 64-65.
    [17] 臧慕文. 分析测试不确定度的评定与表示(Ⅰ)[J]. 分析试验室, 2005(11): 79-84.
    [18] 臧慕文. 分析测试不确定度的评定与表示(Ⅱ)[J]. 分析试验室, 2005(12): 90-95.
    [19] 董绍武, 侯娟. 国际时间比对技术的不确定度估计[C/OL]. 中国仪器仪表学会, 2009: 357-359.https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD&dbname=CPFD0914&filename=YQYB200911002089&v=.
    [20] 黄欢, 黄宇. 标准曲线法测量不确定度的GUM法评定的误差分析[J]. 冶金分析, 2022, 42(9): 16-23.
    [21] 郭宏轩, 孙富强. 加速退化试验测量不确定度评定方法[J]. 航空学报, 2023, 44(7): 134-144.
    [22] 张建功, 鲁浩男, 万皓, 等. 特高压交流输变电工程工频电场测量及不确定度分析[J]. 水电能源科学, 2023, 41(6): 202-205,187.
    [23] SILVA M A, AMADO C, RIBEIRO Á, et al. Uncertainty evaluation in time-dependent measurements[J]. Measurement, 2022, 196: 111196. doi: 10.1016/j.measurement.2022.111196
    [24] 宋明顺, 陈意华, 陶靖轩, 等. 测量不确定度评定中忽略相关项所带来的风险评估[J]. 计量学报, 2005(1): 90-92.
    [25] 刘天怀. 自由度估算若干问题探讨[J]. 中国计量, 2001(9): 43.
    [26] 刘园园, 杨健, 赵希勇, 等. GUM法和MCM法评定测量不确定度对比分析[J]. 计量学报, 2018, 39(1): 135-139.
    [27] 郭小冬, 王明海, 郭猛, 等. 典型精密零件坐标测量不确定度的优化评定与验证[J]. 导航与控制, 2022, 21(2): 98-106,75. doi: 10.3969/j.issn.1674-5558.2022.02.012
    [28] 马宏伟, 李鑫, 赵国松. 基于蒙特卡罗法的五孔探针测量不确定度评定[J]. 航空动力学报, 2022, 37(11): 2587-2597.
    [29] 郑科, 耿卫国, 朱子环. 蒙特卡洛法在发动机推力测量不确定度评估中的应用[J]. 计算机测量与控制, 2021, 29(6): 249-254.
    [30] 马宏伟, 李赫. 温升法测量压气机等熵效率的不确定度[J]. 航空动力学报, 2022, 37(10): 2242-2252.
    [31] 郑兴国, 郗曼丽. 蒙特卡洛方法在复杂兵器可靠性综合评定中的应用[J]. 兵工学报, 1992(2): 73-77.
    [32] 叶笑, 丁义明. 基于泊松对相关的伪随机数发生器的统计测试方法[J]. 数学物理学报, 2022, 42(5): 1482-1495.
    [33] ROBINSON D, ATCITTY C. Comparison of quasi- and pseudo-Monte Carlo sampling for reliability and uncertainty analysis[C/OL]. U. S. A. : American Institute of Aeronautics and Astronautics, 1999[2023-09-01].https://arc.aiaa.org/doi/ 10.2514/6.1999-1589. DOI: 10.2514/6.1999-1589.
    [34] 黄美发, 景晖, 匡兵, 等. 基于拟蒙特卡罗方法的测量不确定度评定[J]. 仪器仪表学报, 2009, 30(1): 120-125.
    [35] 方兴华, 宋明顺, 顾龙芳, 等. 基于自适应蒙特卡罗方法的测量不确定度评定[J]. 计量学报, 2016, 37(4): 452-456.
    [36] 赵施阳, 迟永福, 滕征旭, 等. 基于自适应蒙特卡罗方法的输电线路损耗计算[J]. 制造业自动化, 2023, 45(5): 45-49.
    [37] 窦明理, 陈华凤, 武首熏, 等. 基于蒙特卡洛法测定猪肝中四种异噁唑啉药物的不确定度评定[J]. 计量与测试技术, 2023, 50(7): 107-111.
    [38] 王高俊, 黄河清, 章明洪. 基于自适应蒙特卡洛法评定测量不确定度程序开发与应用[J]. 化学分析计量, 2021, 30(1): 76-80.
    [39] 周宁宁, 刘继义, 周云腾, 等. 基于MCM的不确定度评定软件开发[J]. 中国测试, 2015, 41(S1): 45-48.
    [40] 陈超云, 王灿, 文慧卿, 等. 自适应MCM测量不确定度软件研发[J]. 中国计量大学学报, 2016, 27(4): 406-410,417.
    [41] 刘存成, 靳京民. 用蒙特卡洛自适应法评定测量不确定度的通用程序[J]. 工业计量, 2016, 26(S1): 39-43.
    [42] 刘芳, 张路楠, 刘莹, 等. 蒙特卡洛自适应法评定测量不确定度的程序设计[J]. 计量技术, 2018(5): 64-68.
    [43] VAN DER VEEN A M, COX M G. Getting started with uncertainty evaluation using the Monte Carlo method in R[J]. Accreditation and Quality Assurance, 2021, 26(3): 129-141. doi: 10.1007/s00769-021-01469-5
    [44] 胡红波, 刘爱东, 左爱斌, 等. 加速度计校准的贝叶斯不确定度评估[J]. 计量科学与技术, 2021, 65(5): 101-107,61.
    [45] 薄晓静, 陈晓怀. 基于贝叶斯理论的测量不确定度A类评定[J]. 工业计量, 2004(4): 15-16.
    [46] 薄晓静. 基于贝叶斯理论的不确定度评定方法研究[D]. 合肥: 合肥工业大学, 2005.
    [47] O’HAGAN A, COX M. Simple informative prior distributions for Type A uncertainty evaluation in metrology[J]. Metrologia, 2023, 60(2): 025003. doi: 10.1088/1681-7575/acb93d
    [48] 薄晓静, 陈晓怀. 基于贝叶斯理论的测量不确定度A类评定[J]. 工业计量, 2004(4): 15-16.
    [49] 高玉英. 基于贝叶斯理论的动态不确定度评定方法研究[D]. 合肥: 合肥工业大学, 2007.
    [50] 许煊煚, 江天波. 基于小样本测量值的汽车加速时间的不确定度评定[J]. 大众科技, 2021, 23(5): 41-44.
    [51] BICH W, COX M, MICHOTTE C. Towards a new GUM—an update[J]. Metrologia, 2016, 53(5): S149. doi: 10.1088/0026-1394/53/5/S149
    [52] ELSTER C. Bayesian uncertainty analysis compared with the application of the GUM and its supplements[J]. Metrologia, 2014, 51(4): S159-S166. doi: 10.1088/0026-1394/51/4/S159
    [53] COX M, SHIRONO K. Informative Bayesian Type A uncertainty evaluation, especially for very few observations[J]. Mathematical and Statistical Methods for Metrology, 2019, 1: 4.
    [54] 徐永智. 基于贝叶斯方法与稳健理论的滚动轴承摩擦力矩不确定度建立方法[J]. 航空动力学报, 2022, 37(5): 1000-1009.
    [55] MARTIN J, ELSTER C. GUI for Bayesian sample size planning in type A uncertainty evaluation[J]. Measurement Science and Technology, 2021, 32(7): 075005. doi: 10.1088/1361-6501/abe2bd
    [56] 邓聚龙. 灰色系统理论与计量未来学[J]. 未来与发展, 1983(3): 20-23.
    [57] 朱坚民, 宾鸿赞, 王中宇, 等. 测量结果标准不确定度的灰色评定方法[J]. 华中理工大学学报, 2000(9): 84-86.
    [58] 鲁炯明, 浦伊玲, 赵永钢. 农药残留透射比测量不确定度灰色评定方法[J]. 工业计量, 2022, 32(5): 56-59.
    [59] 程福安, 章家岩, 冯旭刚, 等. 基于灰色模型的蔬菜农药残留量不确定度评定[J]. 食品与机械, 2019, 35(7): 98-102.
    [60] 王中宇, 朱坚民, 夏新涛. 几种测量不确定度的非统计评定方法[J]. 计量技术, 2001(4): 48-50.
    [61] 赵远方. 基于灰色理论的全站仪测距不确定度评定[J]. 工业计量, 2022, 32(4): 45-47.
    [62] 张龙, 叶松, 周树道, 等. 基于灰色系统理论的流速仪检定装置测量不确定度评定[J]. 电子测量技术, 2018, 41(3): 1-5.
    [63] MAURIS G, LASSERRE V, FOULLOY L. A fuzzy approach for the expression of uncertainty in measurement[J]. Measurement, 2001, 29(3): 165-177. doi: 10.1016/S0263-2241(00)00036-1
    [64] 王英, 杨曙年. 基于模糊集合理论评定ICP测量不确定度的研究[J]. 计量技术, 2014(11): 71-74.
    [65] XIA X, WANG Z, GAO Y. Estimation of non-statistical uncertainty using fuzzy-set theory[J]. Measurement Science and Technology, 2000, 11(4): 430. doi: 10.1088/0957-0233/11/4/314
    [66] JAYNES E T. On the rationale of maximum-entropy methods[J]. Proceedings of the IEEE, 1982, 70(9): 939-952. doi: 10.1109/PROC.1982.12425
    [67] MAEDA Y, NGUYEN H T, ICHIHASHI H. Maximum entropy algorithms for uncertainty measures[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1993, 1(1): 69-93. doi: 10.1142/S021848859300005X
    [68] 朱坚民, 郭冰菁, 王中宇, 等. 基于最大熵方法的测量结果估计及测量不确定度评定[J]. 电测与仪表, 2005(8): 5-8.
    [69] 程亮, 童玲. 最大熵原理在测量数据处理中的应用[J]. 电子测量与仪器学报, 2009, 23(1): 47-51.
    [70] 崔伟群, 田锋, 王亭亭, 等. 测量不确定度的深度学习评定方法[J]. 中国计量, 2021(7): 99-101.
    [71] 张珂, 张玮, 阎卫增, 等. 圆度误差的神经网络评定及测量不确定度研究[J]. 机械科学与技术, 2019, 38(3): 428-432.
    [72] 张珂, 张玮, 成果, 等. 支持向量机评定同轴度误差测量不确定度[J]. 电子测量与仪器学报, 2020, 34(5): 29-36.
  • 加载中
计量
  • 文章访问数:  72
  • HTML全文浏览量:  249
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 录用日期:  2023-12-25
  • 修回日期:  2024-03-20
  • 网络出版日期:  2024-04-12

目录

    /

    返回文章
    返回