留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多传感器坐标测量机的校准及应用

位恒政 王为农 裴丽梅 郭斯宜 崔剑秋 向思思

位恒政,王为农,裴丽梅,等. 多传感器坐标测量机的校准及应用[J]. 计量科学与技术,2024, 68(2): 46-51 doi: 10.12338/j.issn.2096-9015.2023.0289
引用本文: 位恒政,王为农,裴丽梅,等. 多传感器坐标测量机的校准及应用[J]. 计量科学与技术,2024, 68(2): 46-51 doi: 10.12338/j.issn.2096-9015.2023.0289
WEI Hengzheng, WANG Weinong, PEI Limei, GUO Siyi, CUI Jianqiu, XIANG Sisi. Calibration and Applications of Multi-Sensor Coordinate Measuring Machines[J]. Metrology Science and Technology, 2024, 68(2): 46-51. doi: 10.12338/j.issn.2096-9015.2023.0289
Citation: WEI Hengzheng, WANG Weinong, PEI Limei, GUO Siyi, CUI Jianqiu, XIANG Sisi. Calibration and Applications of Multi-Sensor Coordinate Measuring Machines[J]. Metrology Science and Technology, 2024, 68(2): 46-51. doi: 10.12338/j.issn.2096-9015.2023.0289

多传感器坐标测量机的校准及应用

doi: 10.12338/j.issn.2096-9015.2023.0289
基金项目: 中国计量科学研究院基本科研业务费(YZC1401-14)。
详细信息
    作者简介:

    位恒政(1978-),中国计量科学研究院副研究员,研究方向:螺纹计量技术和坐标计量技术,邮箱:weihz@nim.ac.cn

  • 中图分类号: TB921

Calibration and Applications of Multi-Sensor Coordinate Measuring Machines

  • 摘要: 多传感器坐标测量机通过组合不同类型的传感器,可以快速地得到更全面、准确的测量数据,成为解决复杂物体测量的重要手段。多传感坐标测量机校准需要考虑单个传感器的计量特征和组合特性,介绍了国内外相关方法,中国计量科学研究院开展了基于多传感器坐标技术的摄影测量用靶标、硬度压头参数等应用研究,开发了光机两用标准器,实现了影像传感器和接触式传感器组合测量系统的精度评价。最后探讨了多传感器坐标测量技术一些有待研究的问题。
  • 图  1  Werth坐标测量机的传感器部分

    Figure  1.  Sensors on Werth coordinate measurement machine

    图  2  HEXAGON 坐标测量机的传感器部分

    Figure  2.  Sensors on HEXAGON coordinate measurement machine

    图  3  多探测系统测量标准球示意图

    注:1为接触式传感器;2为光学距离传感器;3为影像传感器;4为接触传感器测量点;5为制造商指明的光学距离传感器的测量区域:标准球上球冠位置 0°到α;6为影像传感器的测量点,在标准器球的赤道处的XY平面内。

    Figure  3.  Schematic of multi-probe system measuring a standard sphere

    图  4  摄影测量用靶标

    Figure  4.  Photogrammetry retro-reflector target

    图  5  标准器示意图

    Figure  5.  Schematic diagram of the designed artifact

    图  6  标准器参数

    Figure  6.  Parameters of the designed artifact

    图  7  薄环规标准器测量实验装置图

    Figure  7.  Experiment setup for thin ring gauge artifact measurement

    图  8  点测量模式

    Figure  8.  Point measurement mode

    图  9  扫描测量模式

    Figure  9.  Scanning measurement mode

    图  10  洛氏硬度压头测量实验装置图

    Figure  10.  Experimental setup for geometrical measurement of the Rockwell diamond indenter

    图  11  硬度压头点云数据图

    Figure  11.  Point cloud data of the Rockwell Diamond Indenter

    图  12  硬度压头参数图

    Figure  12.  Illustration of the geometries of the Rockwell diamond indenter

    图  13  硬度压头同轴度参数

    Figure  13.  Coaxiality parameters of the Rockwell diamond indenter

  • [1] 张国雄. 三坐标测量机[M]. 天津: 天津大学出版社, 1999.
    [2] WECKENMANN A, JIANG X, SOMMER K, et al. Multisensor data fusion in dimensional metrology[J]. CIRP Annals - Manufacturing Technology, 2009, 58: 701-721. doi: 10.1016/j.cirp.2009.09.008
    [3] NEUSCHAEFER-RUBE U, EHRIG W, NEUGEBAUER M, et al. Test procedures and artefacts for optical coordinate metrology[J]. SPIE, 2009, 7133: 713304.
    [4] 朱嘉. 基于视觉与触觉集成传感的多坐标组合测量系统的研究[D]. 天津: 天津大学, 2010.
    [5] J P Kruth, M Bartscher, S Carmignato, et al. Computed tomography for dimensional metrology[J]. CIRP Annals, 2011, 60(2): 821-842.
    [6] 杨泽南, 黄子婴, 查海勇, 等. 基于森林球的工业CT测量不确定度评定与分析[J]. 光学精密工程, 2023, 31(11): 1672-1683. doi: 10.37188/OPE.20233111.1672
    [7] ISO. Geometrical product specifications(GPS)-Acceptance and reverification tests for coordinate measuring systems(CMS)-Part 9: CMMs with multiple probing systems : ISO 10360-9[S]. Geneva: International Organization for Standardization, 2014
    [8] ISO. Geometrical product specifications (GPS) - Acceptance and reverification tests for coordinate measuring machines (CMM) - Part 5: CMMs using single and multiple stylus contacting probing systems : ISO 10360-5 [S]. Geneva: International Organization for Standardization, 2010.
    [9] ISO. Geometrical product specifications (GPS) - Acceptance and reverification tests for coordinate measuring machines (CMM) - Part 7: CMMs equipped with imaging probing systems : ISO 10360-7 [S]. Geneva: International Organization for Standardization, 2011.
    [10] ISO. Geometrical product specifications (GPS). Acceptance and reverification tests for coordinate measuring systems (CMS). Part 8: CMMs with optical distance sensors : ISO 10360-8 [S]. Geneva: International Organization for Standardization, 2013.
    [11] Wei H , Wang W , Pei L , et al. Concentricity calibration of photogrammetry retro-reflector target[C]. International Society for Optics and Photonics, 2016.
    [12] HAMMAD M S , AL-AHMARI A. New developments in coordinate measuring machines for manufacturing industries[J]. Int. J. Metrol. Qual. Eng, 2014, 5 : 101-111.
    [13] GLEN A TURLEY. Evaluation of a multi-sensor horizontal dual arm Coordinate Measuring Machine for automotive dimensional inspection[J]. Int J Adv Manuf Technol, 2014, 72: 1665-1675. doi: 10.1007/s00170-014-5737-3
    [14] JANICE R G, WILLIAM A C. Evaluating a hybrid 3-dimensional metrology system: merging data from optical and touch probe devices[J]. Proc. of SPIE, 2011, 8133: 813301. doi: 10.1117/12.915357
    [15] CARMIGNATO S, VOLTAN A, SAVIO E. Metrological performance of optical coordinate measuring machines under industrial conditions[J]. CIRP Annals - Manufacturing Technology, 2010, 59: 497-500. doi: 10.1016/j.cirp.2010.03.128
    [16] 位恒政, 王为农, 裴丽梅, 等. 用于多传感器坐标测量机探测误差评价的薄环规标准器[J]. 光学精密工程, 2016, 24(3): 521-525.
    [17] 马小军, 高党忠, 杨蒙生, 等. 应用白光共焦光谱测量金属薄膜厚度[J]. 光学精密工程, 2011, 19(1): 17-22.
    [18] Peter Andersson, Björn Hemming. Determination of wear volumes by chromatic confocal measurements during twin-disc tests with cast iron and steel[J]. Wear, 2015, 338: 95-104.
    [19] V Rishikesan, G L Samuel. Evaluation of surface profile parameters of a machined surface using confocal displacement sensor[J]. Procedia Materials Science, 2014(5): 1385-1391.
    [20] 柳晓飞, 邓文怡, 牛春晖, 等. 一种新型光谱共焦位移测量系统研究[J]. 传感器与微系统, 2013, 32(4): 34-36.
    [21] ISO. Geometrical product specification (GPS) – Surface texture: Areal –Part 602: Nominal characteristics of non-contact (chromatic confocal probe) instruments. International Organization for Standardization: ISO 25178-602 [S] . Geneva: International Organization for Standardization, 2010.
    [22] H Nouira, N El-Hayek, X Yuan, et al. Characterization of the main error sources of chromatic confocal probes for dimensional measurement[J]. Measurement Science and Technology, 2014(25): 044011.
    [23] H Nouira, J-A Salgado, N El-Hayek, et al. Setup of a high-precision profilometer and comparison of tactile and optical measurements of standards[J]. Measurement Science and Technology, 2014(25): 044016.
    [24] 王为农. 校准: 定义的解读和结果的测量不确定度表达[J]. 计量科学与技术, 2023, 67(2): 58-61.
    [25] 位恒政, 王为农, 任国营, 等. 光谱共焦传感器探测误差的研究[J]. 计量学报, 2017, 38(6A): 1-4.
    [26] 于宝峰. 金属材料力学性能测试方法发展[J]. 冶金与材料, 2022(4): 150-151.
    [27] 李庆. 金属材料硬度的研究[J]. 自动化应用, 2023, 64(z1): 25-28.
    [28] 赵国夫. 洛氏硬度计压头对示值的影响[J]. 计量与测试技术, 2009, 36(4): 26-27.
    [29] 李杨, 张凯林, 石伟. 激光扫描共聚焦显微镜在微小硬度压痕测量中的应用研究[J]. 计测技术, 2019, 39(6): 46-49.
    [30] 位恒政, 王为农, 裴丽梅, 等. 面向任务的坐标测量机测量不确定度评价方法[J]. 计量科学与技术, 2021, 65(5): 115-119,54.
  • 加载中
图(13)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  42
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-18
  • 录用日期:  2023-12-22
  • 修回日期:  2023-12-25
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2024-02-18

目录

    /

    返回文章
    返回