留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单路利特罗型光栅干涉仪的超精密位移测量技术研究

朱宏宇 吴益泽 冯婧桐 林子超 禹静 薛栋柏 邓晓 程鑫彬

朱宏宇,吴益泽,冯婧桐,等. 基于单路利特罗型光栅干涉仪的超精密位移测量技术研究[J]. 计量科学与技术,2024, 68(2): 40-45, 75 doi: 10.12338/j.issn.2096-9015.2023.0304
引用本文: 朱宏宇,吴益泽,冯婧桐,等. 基于单路利特罗型光栅干涉仪的超精密位移测量技术研究[J]. 计量科学与技术,2024, 68(2): 40-45, 75 doi: 10.12338/j.issn.2096-9015.2023.0304
ZHU Hongyu, WU Yize, FENG Jingtong, LIN Zichao, YU Jing, XUE Dongbai, DENG Xiao, CHENG Xinbin. Study on Ultra-Precision Displacement Measurement Technique Based on a Single-Path Littrow Grating Interferometer[J]. Metrology Science and Technology, 2024, 68(2): 40-45, 75. doi: 10.12338/j.issn.2096-9015.2023.0304
Citation: ZHU Hongyu, WU Yize, FENG Jingtong, LIN Zichao, YU Jing, XUE Dongbai, DENG Xiao, CHENG Xinbin. Study on Ultra-Precision Displacement Measurement Technique Based on a Single-Path Littrow Grating Interferometer[J]. Metrology Science and Technology, 2024, 68(2): 40-45, 75. doi: 10.12338/j.issn.2096-9015.2023.0304

基于单路利特罗型光栅干涉仪的超精密位移测量技术研究

doi: 10.12338/j.issn.2096-9015.2023.0304
基金项目: 国家重点研发计划项目(2022YFF0605502, 2022YFF0607600);国家自然科学基金面上项目(62075165)。
详细信息
    作者简介:

    朱宏宇(2004-),同济大学物理科学与工程学院在读本科生,研究方向:精密位移测量技术,邮箱:2251727@tongji.edu.cn

    通讯作者:

    林子超(1998-),同济大学精密光学工程技术研究所博士,研究方向:精密位移测量技术、原子光刻技术等,邮箱:zichao@tongji.edu.cn

    邓晓(1988-),同济大学精密光学工程技术研究所副教授,研究方向:纳米光栅标准物质、线宽标准物质、超精密测量及校准技术等,邮箱:18135@tongji.edu.cn

  • 中图分类号: TB921

Study on Ultra-Precision Displacement Measurement Technique Based on a Single-Path Littrow Grating Interferometer

  • 摘要: 基于光栅干涉仪的超精密位移测量技术是先进制造领域的关键共性技术,采用更高刻线密度的光栅是提升光栅干涉仪测量精度与分辨率的有效途径。随着电子束制备光栅技术的提升,采用电子束加工高刻线密度光栅(大于3000线/mm)作为测量基准是优化干涉仪性能的有效途径。利用3333线/mm的高刻线密度电子束直写光栅,采用单路利特罗光栅干涉构型,搭建了原始信号周期为300nm的光栅干涉仪,验证了其在位移测量方面的准确性与稳定性。单路利特罗光栅干涉仪与激光干涉仪比对装置为后续光栅间距标定提供了新的可能性,是电子束直写型高刻线密度光栅在精密位移测量领域的有益探索。
  • 图  1  衍射光栅Doppler频移原理图

    Figure  1.  Doppler shift principle of diffraction grating

    图  2  单路利特罗结构测量原理示意图

    Figure  2.  Schematic diagram of the single-path Littrow structure measurement principle

    图  3  单路利特罗位移测量装置实物图

    Figure  3.  Physical diagram of the single-path Littrow displacement measuring device

    图  4  原始信号辨向特征

    Figure  4.  Orientation characteristics of the original signal

    图  5  激光干涉仪与单路利特罗光栅干涉仪位移测量结果比对图

    Figure  5.  Comparison of displacement measurement results between laser interferometer and single-path Littrow grating interferometer

    表  1  重复定位精度结果

    Table  1.   Results of repeated positioning accuracy

    序号光栅干涉仪/nmF-P激光干涉仪/nm
    正向正向
    124936.2924955.00
    224945.7724960.00
    324941.7724953.00
    424938.1624962.00
    524942.9724956.00
    624941.6824964.00
    724938.6424967.00
    824950.1924950.00
    924932.8024952.00
    1024935.9524965.00
    平均位移24940.4224958.50
    重复测量精度5.146.02
    下载: 导出CSV
  • [1] 李同保. 纳米计量与传递标准[J]. 上海计量测试, 2005(1): 8-13. doi: 10.3969/j.issn.1673-2235.2005.01.001
    [2] LEWIS A J, YACOOT A. Editorial for the Metrologia Focus Issue on Length Metrology[J]. METROLOGIA, 2023, 60(1): 1.
    [3] LEWIS A J, YACOOT A, MILTON M J T, et al. A digital framework for realising the SI-a proposal for the metre[J]. METROLOGIA, 2022, 59(4): 1.
    [4] 韦亚一. 超大规模集成电路先进光刻理论与应用 [M]. 北京: 科学出版社, 2016.
    [5] LEE J, BAGHERI B, KAO H A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems[J]. Manufacturing Letters, 2015, 3: 18-23. doi: 10.1016/j.mfglet.2014.12.001
    [6] HU P C, CHANG D, TAN J B, et al. Displacement measuring grating interferometer: a review[J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2019, 20(5): 631-654.
    [7] YANG S, ZHANG G. A review of interferometry for geometric measurement[J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2018, 29(10): 1-29.
    [8] 时轮, 王鹤, 王池平, 等. 基于光栅干涉仪的超精密位移定位测量新方法[J]. 组合机床与自动化加工技术, 2016(12): 65-67.
    [9] Castenmiller T , Dusa M V , Conley W , et al. Towards ultimate optical lithography with NXT: 1950i dual stage immersion platform[C]. Optical Microlithography XXIII. International Society for Optics and Photonics, 2010.
    [10] 刘林. 大量程高精度小型化光栅位移测量系统关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2023.
    [11] 赵宏波. 光栅干涉型微位移测量系统关键技术研究[D]. 太原: 中北大学, 2020.
    [12] WANG L, GUO Z, YE W, et al. Ultra-precision spatial-separated heterodyne Littrow grid encoder displacement measurement system[J]. Optics and Precision Engineering, 2022, 30(5): 499-509. doi: 10.37188/OPE.20223005.0499
    [13] LV Q, LIU Z W, WANG W, et al. Simple and compact grating-based heterodyne interferometer with the Littrow configuration for high-accuracy and long-range measurement of two-dimensional displacement[J]. APPLIED OPTICS, 2018, 57(31): 9455-9463. doi: 10.1364/AO.57.009455
    [14] LIU L, LIU Z, JIANG S, et al. Polarization-modulated grating interferometer by conical diffraction[J]. OPTICS EXPRESS, 2022, 30(2): 689-699. doi: 10.1364/OE.438490
    [15] WU C C, HSU C C, LEE J Y, et al. Littrow-type self-aligned laser encoder with high tolerance using double diffractions[J]. OPTICS COMMUNICATIONS, 2013, 297: 89-97. doi: 10.1016/j.optcom.2013.01.048
    [16] KAO C F, LU S H, SHEN H M, et al. Diffractive laser encoder with a grating in Littrow configuration[J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47(3): 1833-1837.
    [17] Wise S , Quetschke V , Deshpande A J , et al. Phase Effects in the Diffraction of Light: Beyond the Grating Equation[J]. Physical Review Letters, 2005, 95(1): 013901.
    [18] 梁佩莹, 梁泽汇, 徐晓松, 等. 利用单光栅多普勒效应测量微小振动[J]. 电子技术与软件工程, 2016(6): 118-119.
    [19] 林子超, 姚玉林, 周通, 等. 基于四维协变量的光栅干涉系统频移理论研究[J]. 计量科学与技术, 2022, 66(11): 3-11,26. doi: 10.12338/j.issn.2096-9015.2022.0248
    [20] 孔令雯, 蔡文魁, 施立恒, 等. 基于利特罗式激光反馈光栅干涉的微位移测量技术[J]. 中国激光, 2019, 46(4): 224-229.
    [21] BORN M, WOLF E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light [M]. Amsterdam : Elsevier, 2013.
    [22] 王磊杰, 张鸣, 朱煜, 等. 超精密外差利特罗式光栅干涉仪位移测量系统[J]. 光学精密工程, 2017, 25(12): 2975-2985.
    [23] 吕强. 基于衍射光栅的外差Littrow式精密位移测量系统关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.
    [24] DENG X, LIN Z, DAI G, et al. Length traceability chain based on chromium atom transition frequency [J/OL]. Arxiv.https://doi.org/10.48550/arXiv.2302.14633.
    [25] 林存宝. 外差干涉纳米级光栅位移测量系统关键技术研究[D]. 长沙: 国防科学技术大学, 2019.
    [26] 冯立娜. 基于利特罗结构的激光自混合光栅干涉位移测量及信号处理[D]. 大庆: 东北石油大学, 2023.
    [27] 常郅坤, 张婉怡, 沈箫雨, 等. 自溯源型MOEMS加速度计谐振子设计仿真研究[J]. 计量科学与技术, 2023, 67(6): 9-15,43. doi: 10.12338/j.issn.2096-9015.2023.0109
    [28] DAI G L, KOENDERS L, POHLENZ F, et al. Accurate and traceable calibration of one-dimensional gratings[J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16(6): 1241-1249. doi: 10.1088/0957-0233/16/6/001
    [29] Misumi I , Kitta J I , Fujimoto H , et al. 25 nm pitch comparison between a traceable x-ray diffractometer and a metrological atomic force microscope[J]. Measurement Science & Technology, 2012, 23(1): 136.
    [30] JIN J, MISUMI I, GONDA S, et al. Pitch Measurement of 150 nm ID-grating Standards Using an Nanometrological Atomic Force Microscope[J]. International Journal of Precision Engineering and Manufacturing, 2004, 5(3): 19-25.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  70
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-22
  • 录用日期:  2023-12-04
  • 修回日期:  2023-12-26
  • 网络出版日期:  2024-01-06
  • 刊出日期:  2024-02-18

目录

    /

    返回文章
    返回