留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

比吸收率测量系统验证方法分析及扩展

庞新华 周鑫 武彤 沈庆飞 唐维 李安香 穆晓彤 杨超

庞新华,周鑫,武彤,等. 比吸收率测量系统验证方法分析及扩展[J]. 计量科学与技术,待出版 doi: 10.12338/j.issn.2096-9015.2023.0357
引用本文: 庞新华,周鑫,武彤,等. 比吸收率测量系统验证方法分析及扩展[J]. 计量科学与技术,待出版 doi: 10.12338/j.issn.2096-9015.2023.0357
PANG Xinhua, ZHOU Xin, WU Tong, SHEN Qingfei, TANG Wei, LI Anxiang, MU Xiaotong, YANG Chao. Analysis and Extension of Validation Methods for SAR Measurement Systems[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2023.0357
Citation: PANG Xinhua, ZHOU Xin, WU Tong, SHEN Qingfei, TANG Wei, LI Anxiang, MU Xiaotong, YANG Chao. Analysis and Extension of Validation Methods for SAR Measurement Systems[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2023.0357

比吸收率测量系统验证方法分析及扩展

doi: 10.12338/j.issn.2096-9015.2023.0357
基金项目: 国家重点研发计划(2022YFF0604805);广东省重点领域研发计划(2020B0404030006)。
详细信息
    作者简介:

    庞新华(1998-),中国计量科学研究院在读研究生,研究方向:电磁测量技术等,邮箱:pangxh123@163.com

    通讯作者:

    周鑫(1980-),中国计量科学研究院副研究员,研究方向:电磁照射计量,邮箱:zhouxin@nim.ac.cn

Analysis and Extension of Validation Methods for SAR Measurement Systems

  • 摘要: 比吸收率作为涉及无线通讯产品的电磁辐射人身安全性的必检参数,由于被测设备的更迭,其测量系统及测量方法也需要随之更新,故而对测量系统的验证提出了新的要求。基于对现行标准中验证方法的深入理解,通过电磁仿真及实验测量,对外推、探头线性度和探头调制响应三个传统验证项目的验证方法进行了测量分析,并结合新测试新需求,对验证方法进行了扩展。实测结果表明扩展验证方法具有可行性及稳定性。由于通过自研方法获得参考值,因此可以根据需要扩展验证方法,对验证点位等验证配置进行自定义设置,为研究新型及国产比吸收率测量系统的验证方法提供了技术支撑。
  • 图  1  研究思路图

    Figure  1.  Conceptual framework

    图  2  稳定辐射源设计图

    Figure  2.  Stable radiation source design diagram

    图  3  系统验证装置图

    Figure  3.  System verification device diagram

    图  4  仿真结果图

    Figure  4.  Simulation results graph

    图  5  测量系统及仿真的结果比较图Y=0

    Figure  5.  Comparison of the results of the measurement system and the simulation of the graph Y=0

    图  6  测量系统及仿真的结果比较图Y=20

    Figure  6.  Comparison of the results of the measurement system and the simulation of the graph Y=20

    图  7  重复性实验结果分析Y=0

    Figure  7.  Repeatability of experimental results analysis Y=0

    图  8  重复性实验结果分析Y=20

    Figure  8.  Repeatability of experimental results analysis Y=20

    图  9  连续波信号的探头线性-Local SAR值验证结果分析

    Figure  9.  Analysis of probe linear-local SAR value verification results for continuous wave signals

    图  10  周期性脉冲调制信号的探头线性验证结果分析

    Figure  10.  Analysis of probe linearity verification results for periodic pulse modulated signals

    表  1  仿真值及标准值的比较

    Table  1.   Comparison of simulated and standard values

    测量参数 仿真值/(W·kg−1) 标准值/(W·kg−1) 误差/%
    SAR1g 40.79 39.7 2.7
    SAR10g 21.15 20.5 3.2
    下载: 导出CSV

    表  2  实测值及标准值的比较

    Table  2.   Comparison of measured and standard values

    测量参数 实测值/(W·kg−1) 标准值/(W·kg−1) 误差/%
    SAR1g 37.6 39.7 −5.3
    SAR10g 19.7 20.5 −3.8
    下载: 导出CSV

    表  3  仿真值及标准值的比较

    Table  3.   Comparison of simulated and standard values

    测量点坐标/ mm 仿真值/(W·kg−1) 标准值/(W·kg−1) 误差/%
    Y=0 77.3 72.1 7.2
    Y=20 6.53 6.60 −1.1
    下载: 导出CSV

    表  4  测量外推值及标准值的比较

    Table  4.   Comparison of measured extrapolated and standard values

    测量点坐标/ mm 测量外推值/(W·kg−1) 标准值/(W·kg−1) 误差/%
    Y=0 69.2 72.1 −4.0
    Y=20 6.52 6.60 −1.2
    下载: 导出CSV

    表  5  重复性实验结果分析

    Table  5.   Analysis of repeatability experiment results

    Y=0Y=20
    169.136.48
    268.806.56
    368.846.50
    468.816.61
    568.846.51
    671.196.50
    771.296.62
    868.876.64
    971.126.64
    1071.146.52
    U(95%)3.20%1.80%
    下载: 导出CSV

    表  6  归一化平均SAR值探头线性验证结果

    Table  6.   Normalized average SAR value probe linearity validation results

    天线端辐射
    功率/ mW
    1 g SAR
    归一化值/
    (W·kg−1)
    10 g SAR
    归一化值/
    (W·kg−1)
    1 g SAR
    误差/%
    10 g SAR
    误差/%
    0.2 36.95 18.20 −1.7 −7.7
    0.5 38.20 19.56 1.6 −0.8
    5 36.40 19.00 −3.2 −3.7
    10 38.80 20.30 3.2 2.9
    50 38.60 20.20 2.7 2.4
    100 38.30 20.10 1.9 1.9
    200 37.60 19.70 0.0 −0.1
    250 37.60 19.72 0.0 0.0
    300 38.00 20.03 1.1 1.6
    500 36.80 19.44 −2.1 −1.4
    下载: 导出CSV

    表  7  归一化Local SAR值探头线性验证结果

    Table  7.   Normalized Local SAR value probe linearity verification results

    天线端辐射
    功率/ mW
    Local SAR归一化值/
    (W·kg−1)
    Local SAR
    误差/%
    0.2 33.42 −4.4
    0.5 35.06 0.3
    5 35.84 2.6
    10 35.88 2.7
    50 35.56 1.8
    100 35.26 0.9
    200 34.75 −0.5
    250 34.94 0.0
    300 34.73 −0.6
    500 34.70 −0.7
    下载: 导出CSV

    表  8  平均SAR周期性脉冲调制信号探头线性验证结果

    Table  8.   Periodic pulse modulated signal probe linearity verification results of averaged SAR

    平均SAR /g 仿真值/
    (W·kg−1)
    标准值/
    (W·kg−1)
    参考值/
    (W·kg−1)
    误差/%
    1 0.937 37.48 37.60 -0.3
    10 0.495 19.80 19.72 0.4
    下载: 导出CSV
  • [1] ZHANG W, SONG G, ZHAO Q, et al. Discussion of measurement and evaluation of the radiation hazard of personal in mixed field[C]. 2020 6th Global Electromagnetic Compatibility Conference (GEMCCON), 2020.
    [2] SINGH J, KUMAR S, JOHNSON D M, et al. Electromagnetic Radiation Effects in Human and Animal Health[C]. 14th International Conference on Advances in Computing, Control, and Telecommunication Technologies, 2023.
    [3] 门俊琦, 姚斌伟, 郭家彬, 等. 电磁辐射防护抗氧化药物研究进展[J]. 军事医学, 2022, 46(10): 792-797.
    [4] I E MIGALEV, A A SOSHNIKOV, E V TITOV. Technology of Electromagnetic Radiation Danger Presentation[C]. 2019 International Ural Conference on Electrical Power Engineering (UralCon), 2019.
    [5] V L WALTER. Problems of human exposure in electromagnetic fields and radiation[C]. 2008 10th International Conference on Electromagnetic Interference & Compatibility, 2008.
    [6] 武彤. 移动通信终端电磁辐射测试方法探讨[J]. 中华环境, 2016(z1): 40-75.
    [7] 刘宇军, 武彤, 尹洪雁, 等. 射频电磁场比吸收率(SAR)测量技术[M] . 电子工业出版社, 2017: 5.
    [8] 孙静, 魏作余. 智能手机电磁辐射研究[J]. 电子测试, 2017(10): 55-56. doi: 10.3969/j.issn.1000-8519.2017.10.025
    [9] 沈际昊, 方宏萍. 手机电磁辐射研究[J]. 贵州农机化, 2022(3): 24-27.
    [10] 翟明岳, 武彤. 电磁辐射风险沟通[M] . 北京: 海洋出版社, 2015: 10.
    [11] 才辉, 钟华彧. 人体与手机不同距离下比吸收率的研究[J]. 安全与电磁兼容, 2014(2): 35-39. doi: 10.3969/j.issn.1005-9776.2014.02.005
    [12] WU T, ZHOU X, SHEN Q F, et al. Proficiency Testing for Complex Permittivity Measurements of Tissue Equivalent Liquid Used in SAR Assessment[J]. IEEE Access, 2020(8): 210592-210596.
    [13] K FUKUNAGA, S WATANABE, Y YAMANAKA. Dielectric properties of tissue-equivalent liquids and their effects on specific absorption rate[J]. IEEE Trans, Electromagn. Compat., 2004(46): 126-129.
    [14] M G DOUGLAS, M Y KANDA, W G LUENGAS, et al. An Algorithm for Predicting the Change in SAR in a Human Phantom Due to Deviations in Its Complex Permittivity[J]. IEEE Trans. Electromagn. Compat, 2009(51): 217-226.
    [15] ICNIRP. ICNIRP—International Commission on Non-ionizing Radiation Protection Guidelines for limiting exposure to electromagnetic fields(100 kHz to 300 GHz)[J]. Health Phys. , 2020(118): 483–524, 2020.
    [16] IEC. Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz) : IEC 62209-1: 2016 [S]. London, 2016.
    [17] IEC. Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields From Hand-Held and Body-Mounted Wireless Communication Devices—Part 1528: Human Models, Instrumentation, and Procedures (Frequency Range of 4 MHz to 10 GHz): IEEE/IEC 62209-1528 [S]. London, 2020.
    [18] IEC. Human Exposure to Radio Frequency Fields from Hand-Held and Body Mounted Wireless Communication Devices—Human Models, Instrumentation, and Procedures—Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz): IEEE/IEC 62209-3: 2019 [S]. London, 2019.
    [19] 周鑫, 沈庆飞, 李安香, 等. 新一代无线设备最大辐射功率测试方法分析[J]. 计量科学与技术, 2021, 65(6): 9-13. doi: 10.12338/j.issn.2096-9015.2020.9008
    [20] 周鑫, 冯志刚, 钟章队, 等. 频域信道测量中VNA测量不确定度传播规律[J]. 计量学报, 2017, 38(5): 641-644. doi: 10.3969/j.issn.1000-1158.2017.05.26
    [21] 崔巍, 宋国栋, 张奇, 等. 电磁暴露危害及相关标准的探讨[J]. 安全与电磁兼容, 2022(3): 61-65. doi: 10.3969/j.issn.1005-9776.2022.03.012
    [22] 林军, 林浩, 邹方竹, 等. 5G手机电磁辐射检测认证与探讨[J]. 安全与电磁兼容, 2020(3): 41-44.
    [23] 辛娟. 双碳战略下的智能网联新能源汽车技术与应用[J]. 汽车与新动力, 2023, 6(6): 1-4. doi: 10.3969/j.issn.2096-4870.2023.06.001
    [24] 宗苏灿. 新能源汽车智能驾驶的发展趋势分析[J]. 汽车与新动力, 2022, 5(5): 21-24.
    [25] 张君兰. 基于智能网联技术的新能源汽车产业共同体研究[J]. 汽车与新动力, 2022, 5(4): 27-29 .
    [26] 涂辉招. 上海智能网联汽车的新发展与新机遇[J]. 张江科技评论, 2022(1): 42-43 .
    [27] 赵光辉, 李翔宇, 陈凯. 我国智能网联汽车发展现状研究[J]. 时代汽车, 2019(17): 153-154. doi: 10.3969/j.issn.1672-9668.2019.17.068
    [28] 周鹏, 杨静. 基于5G技术的智能网联汽车发展现状与趋势分析[J]. 时代汽车, 2022(2): 33-34.
    [29] 王健美, 魏晨, 胥彦玲, 等. 专利视角下全球智能网联汽车技术竞争态势分析[J]. 汽车技术, 2021(8): 20-29.
    [30] 周晓塨. 智能网联汽车的前沿探讨[J]. 时代汽车, 2020(18): 48-49.
    [31] IEC. Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices–Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz): IEC 62209-2: 2019 [S]. London, 2019.
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  29
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 录用日期:  2024-01-08
  • 修回日期:  2024-01-18
  • 网络出版日期:  2024-03-12

目录

    /

    返回文章
    返回