留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大口径宽温区真空黑体辐射源的研制

周晶晶 郝小鹏 宋健 郭国瑞 刘志壹 徐春媛

周晶晶,郝小鹏,宋健,等. 大口径宽温区真空黑体辐射源的研制[J]. 计量科学与技术,2024, 68(5): 57-64 doi: 10.12338/j.issn.2096-9015.2024.0044
引用本文: 周晶晶,郝小鹏,宋健,等. 大口径宽温区真空黑体辐射源的研制[J]. 计量科学与技术,2024, 68(5): 57-64 doi: 10.12338/j.issn.2096-9015.2024.0044
ZHOU Jingjing, HAO Xiaopeng, SONG Jian, GUO Guorui, LIU Zhiyi, XU Chunyuan. Development of a Vacuum Blackbody Radiation Source with Large Aperture and Wide Temperature Range[J]. Metrology Science and Technology, 2024, 68(5): 57-64. doi: 10.12338/j.issn.2096-9015.2024.0044
Citation: ZHOU Jingjing, HAO Xiaopeng, SONG Jian, GUO Guorui, LIU Zhiyi, XU Chunyuan. Development of a Vacuum Blackbody Radiation Source with Large Aperture and Wide Temperature Range[J]. Metrology Science and Technology, 2024, 68(5): 57-64. doi: 10.12338/j.issn.2096-9015.2024.0044

大口径宽温区真空黑体辐射源的研制

doi: 10.12338/j.issn.2096-9015.2024.0044
基金项目: 国家重点研发计划项目(2022YFF0610801)。
详细信息
    作者简介:

    周晶晶(1994-),中国计量科学研究院助理研究员,研究方向:红外遥感辐射定标,邮箱:zhoujj@nim.ac.cn

    通讯作者:

    郝小鹏(1980-),中国计量科学研究院研究员,研究方向:红外遥感定标与计量技术研究,邮箱:haoxp@nim.ac.cn

  • 中图分类号: TB941

Development of a Vacuum Blackbody Radiation Source with Large Aperture and Wide Temperature Range

  • 摘要: 真空黑体辐射源是红外遥感载荷地面实验室辐射定标的重要仪器。为满足红外遥感载荷向着大口径、宽温区范围、高定量化发展趋势,研制了300 mm口径、160~380 K温度范围、发射率为0.9975的大口径真空黑体辐射源。介绍了大口径宽温区真空黑体辐射源的工作原理及结构设计,开展了黑体的发射率计算和热学仿真模拟。测试了黑体在真空低温工况下160~380 K温度范围的底部温度均匀度和波动度,结果表明底部温度均匀度优于0.120 K,控温温度波动度优于0.031 K/30 min;基于控制环境辐射的发射率测量方法测量了黑体空腔发射率,并利用真空低背景红外亮温标准装置测量了黑体的光谱辐射亮温,在10 μm波长辐射亮温合成标准不确定度为0.04 K@160 K,0.099 K@280 K,0.095 K@380 K,0.122 K@380 K。大口径宽温区真空黑体辐射源能够满足红外遥感载荷地面实验室辐射定标需求,支撑我国红外遥感定量化水平的提升。
  • 图  1  黑体结构图

    Figure  1.  The structure diagram of the blackbody

    图  2  黑体控温结构设计

    Figure  2.  The temperature control structure design of the blackbody

    图  3  黑体控温逻辑

    Figure  3.  The temperature control logic of the blackbody

    图  4  四棱锥阵列发射率计算模型

    Figure  4.  The calculation model for emissivity of pyramid arrays

    图  5  黑体发射率计算模型

    Figure  5.  The calculation model for emissivity of blackbody

    图  6  温度均匀度仿真结果

    Figure  6.  The simulation results of temperature uniformity

    图  7  黑体发射率测试结果

    Figure  7.  The test results of blackbody emissivity

    图  8  真空光谱发射率测试结果

    Figure  8.  The vacuum spectral emissivity test results of blackbody

    图  9  黑体热学测试安装示意图

    Figure  9.  The installation diagram of blackbody thermal testing

    图  10  黑体底部测温点分布示意图

    Figure  10.  Distribution diagram of temperature measurement points at the bottom of the blackbody

    图  11  黑体温度曲线

    Figure  11.  The temperature stability curve of blackbody

    图  12  黑体控温320 K光谱辐射亮温曲线

    Figure  12.  The spectral radiance temperature curve at 320 K

    表  1  真空黑体辐射源研究统计

    Table  1.   Research statistics on vacuum blackbodies

    名称 尺寸 发射率 温度范围
    VTBB100黑体 口径20 mm,
    腔深250 mm
    优于0.9997 100~450 K
    VMTBB黑体 口径20 mm 优于0.9994 400~700 K
    IASI定标黑体 / 0.996 291~299 K
    100~400 K真空黑体 口径30 mm,
    腔深315 mm
    0.9998 100~400 K
    H500型真空黑体 口径92 mm 0.9965 180~493 K
    大口径面源黑体 口径400 mm×
    400 mm
    0.992 200~400 K
    下载: 导出CSV

    表  2  黑体各部件及材料列表

    Table  2.   List of blackbody parts and materials

    黑体部件名称所用材料
    底部辐射体、侧壁辐射体
    隔热壳体、口部光阑聚四氟乙烯
    黑体支撑架不锈钢
    铜辫
    下载: 导出CSV

    表  3  不同腔深的黑体发射率结果

    Table  3.   Emissivity results of blackbody with different cavity depths

    内径及光阑尺寸腔深/mm黑体发射率
    内径350 mm,
    光阑300 mm
    3000.9981
    3500.9985
    4000.9988
    4500.9990
    5000.9991
    下载: 导出CSV

    表  4  黑体辐射面温度均匀度仿真条件

    Table  4.   Simulation conditions for temperature uniformity of blackbody radiation surface

    参数项数值
    黑体底部辐射面发射率0.99
    黑体侧壁辐射面发射率0.96
    多层发射率0.15
    环境温度100 K
    黑体温度160~380 K
    铜辫温度150 K
    3个加热分区均匀功率加热
    下载: 导出CSV

    表  5  黑体温度均匀度

    Table  5.   The temperature uniformity of the blackbody 单位:K

    控温点底部温度均匀度整体温度均匀度
    1600.0110.079
    2000.0170.098
    2400.0140.060
    2800.0210.107
    3200.0240.175
    3800.0410.341
    下载: 导出CSV

    表  6  黑体温度均匀度和波动度测试结果

    Table  6.   The temperature uniformity and stability test results of the blackbody 单位:K

    控温点波动度底部温度均匀度
    1600.0030.041
    2000.0120.091
    2400.0150.095
    2800.0310.094
    3200.0140.094
    3800.0100.121
    下载: 导出CSV

    表  7  黑体在10 μm波长辐射亮温不确定度分析

    Table  7.   The uncertainty analysis of the radiance temperature at 10 μm 单位:K

    不确定度分量控温温度点
    160280320380
    u110.0140.0040.0040.004
    u120.0050.0050.0050.005
    u130.0050.0050.0050.005
    u140.0030.0310.0140.010
    u150.0410.0940.0940.121
    u10.0440.0990.0950.122
    u20.0010.0030.0040.006
    u30.0000.0000.0000.000
    uc0.0440.0990.0950.122
    下载: 导出CSV
  • [1] Liu C, Xie F, Dong X, et al. Small target detection from infrared remote sensing images using local adaptive thresholding[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1941 − 1952. doi: 10.1109/JSTARS.2022.3151928
    [2] Smigaj M, Agarwal A, Bartholomeus H, et al. Thermal infrared remote sensing of stress responses in forest environments: a review of developments, Challenges, and Opportunities[J]. Current Forestry Reports, 2023, 1: 1 − 21.
    [3] Xie L, Wu S, Wu R, et al. Cross-comparison of radiation response characteristics between the FY-4B/AGRI and GK-2A/AMI in China[J]. Remote Sensing, 2023, 15(3): 779. doi: 10.3390/rs15030779
    [4] 吴骅, 李秀娟, 李召良, 等. 高光谱热红外遥感: 现状与展望[J]. 遥感学报, 2021, 25(8): 1567 − 1590.
    [5] Hao X, Song J, Ding L, et al. Spaceborne radiance temperature standard blackbody for Chinese high-precision infrared spectrometer[J]. Metrologia, 2020, 57(6): 065016. doi: 10.1088/1681-7575/abbcc0
    [6] 盛一成, 顿雄, 金伟其, 等. 星上红外遥感相机的辐射定标技术发展综述[J]. 红外与激光工程, 2019, 48(9): 18-30.
    [7] Morozova S P, Parfentiev N A, Lisiansky B E, et al. Vacuum variable-temperature blackbody VTBB100[J]. International Journal of Thermophysics, 2008, 29: 341 − 351. doi: 10.1007/s10765-007-0355-z
    [8] Morozova S P, Parfentiev N A, Lisiansky B E, et al. Vacuum variable medium temperature blackbody[J]. International Journal of Thermophysics, 2010, 31: 1809 − 1820. doi: 10.1007/s10765-010-0843-4
    [9] Blumstein D, Chalon G, Carlier T, et al. IASI instrument: technical overview and measured performances[J]. Infrared Spaceborne Remote Sensing XII, 2004, 5543: 196 − 207. doi: 10.1117/12.560907
    [10] Blumstein D, Tournier B, Cayla F R, et al. In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A[C]. Atmospheric and Environmental Remote Sensing Data Processing and Utilization III: Readiness for GEOSS. International Society for Optics and Photonics, 2007, 6684: 66840H.
    [11] 舒心, 郝小鹏, 宋健, 等. 100~ 400K 真空红外辐射亮温标准黑体辐射源研制[J]. 计量学报, 2019, 40(1): 13 − 19. doi: 10.3969/j.issn.1000-1158.2019.01.03
    [12] 龚律宇, 郝小鹏, 孙建平, 等. H500型红外遥感定标高精度真空黑体辐射源的研制[J]. 计量学报, 2017, 38(2): 129 − 134. doi: 10.3969/j.issn.1000-1158.2017.02.01
    [13] 扈又华, 郝小鹏, 司马瑞衡, 等. 大口径高发射率面型黑体辐射源的研制[J]. 计量学报, 2021, 42(3): 314 − 320. doi: 10.3969/j.issn.1000-1158.2021.03.09
    [14] Wang G, Xia C, Hao X, et al. Research on emissivity of surface blackbody with microarray structure based on Monte-Carlo method[C]. Conference on Infrared, Millimeter, Terahertz Waves and Applications (IMT2022). SPIE, 2023, 12565: 893 − 898.
    [15] 丁经纬, 郝小鹏, 于坤, 等. 黑体涂层光谱发射率特性研究[J]. 红外与激光工程, 2023, 52(10): 234 − 243.
    [16] Zhang H, Hao X, Su W, et al. Strongly enhanced infrared emission of a black coating doped with multiwall carbon nanotubes[J]. Infrared Physics & Technology, 2021, 113: 103651.
    [17] Zhou J, Hao X, Wang X, et al. Highly emissive spaceborne blackbody radiation source based on light capture[J]. Optics Express, 2022, 30(12): 20859 − 20870. doi: 10.1364/OE.460564
    [18] Wang G, Xia C, Song J, et al. Optical reflection characteristic–based emissivity analysis of a pyramid array flat-plate blackbody for remote sensor calibration[J]. Optics Express, 2023, 31(11): 17878 − 17892. doi: 10.1364/OE.488111
    [19] Sapritsky V, Prokhorov A. Blackbody radiometry, vol. 1: fundamentals[M]. Switzerland: Springer, 2020, 1: 199 − 214.
    [20] Adibekyan A, Kononogova E, Monte C, et al. High-accuracy emissivity data on the coatings Nextel 811-21, Herberts 1534, Aeroglaze Z306 and Acktar Fractal Black[J]. International Journal of Thermophysics, 2017, 38(6): 1 − 14.
    [21] Sima R, Hao X, Song J, et al. Research on the temperature transfer relationship between miniature fixed-point and blackbody for on-orbit infrared remote sensor calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(7): 6266 − 6276.
    [22] Sima R H, Hao X P, Song J, et al. Accurate numerical model for characteristic temperature acquisition of miniature fixed-point blackbodies[J]. Measurement, 2021, 168: 108462. doi: 10.1016/j.measurement.2020.108462
    [23] 宋健, 郝小鹏, 原遵东, 等. 基于控制环境辐射的黑体辐射源发射率测量方法研究[J]. 中国激光, 2015, 42(9): 269 − 275.
    [24] Song J, Hao X P, Yuan Z D, et al. Research of ultra-black coating emissivity based on a controlling the surrounding radiation method[J]. International Journal of Thermophysics, 2018, 39(7): 1 − 10.
    [25] Song J, Hao X, Yuan Z, et al. Integrating-sphere-free reflectometry of blackbody cavity emissivity using the ratio of hemispherical–given solid angle reflections[J]. Optics Express, 2020, 28(16): 23294 − 23305. doi: 10.1364/OE.394325
    [26] Hao X P, Song J, Xu M, et al. Vacuum radiance-temperature standard facility for infrared remote sensing at NIM[J]. International Journal of Thermophysics, 2018, 39(6): 1 − 14.
    [27] 郝小鹏, 宋健, 孙建平, 等. 风云卫星的红外遥感辐射亮温国家计量标准装置[J]. 光学精密工程, 2015, 23(7): 1845 − 1851.
    [28] Saunders P, Fischer J, Sadli M, et al. Uncertainty budgets for calibration of radiation thermometers below the silver point[J]. International Journal of Thermophysics, 2008, 29: 1066 − -1083. doi: 10.1007/s10765-008-0385-1
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  73
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-23
  • 录用日期:  2024-03-12
  • 修回日期:  2024-03-19
  • 网络出版日期:  2024-05-17

目录

    /

    返回文章
    返回