留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿尔兹海默症标志物测量技术及标准化研究进展

周希蕊 顾仁济 马瑞敏 姜文灿 罗施中 冯流星

周希蕊,顾仁济,马瑞敏,等. 阿尔兹海默症标志物测量技术及标准化研究进展[J]. 计量科学与技术,2024, 68(9): 41-50 doi: 10.12338/j.issn.2096-9015.2024.0054
引用本文: 周希蕊,顾仁济,马瑞敏,等. 阿尔兹海默症标志物测量技术及标准化研究进展[J]. 计量科学与技术,2024, 68(9): 41-50 doi: 10.12338/j.issn.2096-9015.2024.0054
ZHOU Xirui, GU Renji, MA Ruimin, JIANG Wencan, LUO Shizhong, FENG Liuxing. Advances in Measurement Techniques and Standardization of Alzheimer's Disease Biomarkers[J]. Metrology Science and Technology, 2024, 68(9): 41-50. doi: 10.12338/j.issn.2096-9015.2024.0054
Citation: ZHOU Xirui, GU Renji, MA Ruimin, JIANG Wencan, LUO Shizhong, FENG Liuxing. Advances in Measurement Techniques and Standardization of Alzheimer's Disease Biomarkers[J]. Metrology Science and Technology, 2024, 68(9): 41-50. doi: 10.12338/j.issn.2096-9015.2024.0054

阿尔兹海默症标志物测量技术及标准化研究进展

doi: 10.12338/j.issn.2096-9015.2024.0054
基金项目: 国家重点研发计划项目(2021YFC2103900);国家市场监管重点实验室(营养与健康化学计量及应用)开放课题(AKYKF2312)。
详细信息
    作者简介:

    周希蕊(1987-),中国计量科学研究院副研究员,研究方向:蛋白质计量技术研究,邮箱:zhouxr@nim.ac.cn

    通讯作者:

    冯流星(1977-),中国计量科学研究院研究员,研究方向:金属组学计量技术研究,邮箱:fenglx@nim.ac.cn

  • 中图分类号: TB99

Advances in Measurement Techniques and Standardization of Alzheimer's Disease Biomarkers

  • 摘要: 阿尔兹海默症是一种不可逆的神经退行疾病,在65岁以上老年人群中高发;随着各国老龄化程度的加深,AD已经成为影响全球公共健康和社会发展的重大问题。AD的发病机制至今不明确,目前尚无有效的药物可以逆转或阻止病情发展。利用全面的、高度特异性的诊断标志物组合对AD进行早期识别是疾病精准诊断的关键,也是实现疾病有效治疗的先决条件。针对AD诊断标志物开发高灵敏、高准确且高通量的定量技术,是获取可靠结果的有效途径,也是AD临床诊断的迫切需求。推进AD诊断标志物相关检验的标准化,能够显著提升不同检测平台所获结果的一致性、互换性和溯源性。综述梳理了AD诊断标准的演变和药物研发现状,列举了疾病相关的重要诊断标志物,介绍并对比了相关测量检测技术,最后对AD诊断标志物精准测量技术的标准化现状进行了分析并做出展望,希望为推动相关领域标准物质的开发和参考测量程序的建立,以及IVD产品和平台的性能提升提供有益的指导。
  • 图  1  APP蛋白的切割方式

    Figure  1.  Cleavage of amyloid precursor protein (APP)

    图  2  AD症中Tau蛋白的致病机制

    Figure  2.  Pathogenesis of Tau protein in Alzheimer's disease

    图  3  LC-MS/MS检测体液样本中Aβ1-40和Aβ1-42的工作流程

    Figure  3.  Workflow for the detection of Aβ1-42 and Aβ1-40 in biofluids

    表  1  不同机构建立的脑脊液中Aβ的质谱测量程序的测试性能分析

    Table  1.   Quantification performance of reference measurement procedures established by different organizations

    发布机构 美国辉瑞公司 瑞典萨尔格林斯卡医院 宾夕法尼亚大学佩雷尔曼医学院 北京协和医院
    检测方法 UPLC/MS/MS[74] LC/MS/MS[75] UPLC/MS/MS[76] UPLC/MS/MS[77]
    前处理 固相萃取 固相萃取 固相萃取 顺序提取磁珠富集
    脑脊液体积 0.2 mL 0.18 mL 0.1 mL 0.2 mL
    色谱仪器 Acquity UPLC Acella 1250 Acquity UPLC Acquity UPLC
    (Waters) (Waters) (Waters)
    质谱仪器 三重四极杆 Q-Exactive quadrupole-Orbitrap 三重四极杆 三重四极杆
    Xevo TQ-S (Waters) (Thermo Scientific) Xevo TQ-S (Waters) Xevo TQ-XS(Waters)
    色谱柱 BEH 300 Pro-Swift RP-4H BEH 300 BEH C4 柱
    2.1 mm × 150 mm 1 mm × 250 mm 2.1 mm × 300 mm 2.1 mm × 50 mm
    (Waters) (Thermo Scientific) (Waters) (Waters)
    标曲范围
    1-40 100~10000 pg/mL 150~4000 pg/mL 100~3000 pg/mL 500~25000 pg/mL
    1-42 100~10000 pg/mL 150040000 pg/mL 200~20000 pg/mL 100~5000 pg/mL
    离子对
    1-40 1083.0>1053.6 1083.47>17种子离子 1083.6>1054 1083.2>1053.77
    1-42 1129.0>1078.5 1129.58>15种子离子 1129.6>1079 1129.27>1106.8
    下载: 导出CSV
  • [1] JACK C R, ALBERT M S, KNOPMAN D S, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease[J]. Alzheimer’s & Dementia, 2011, 7(3): 257-262.
    [2] DUBOIS B, FELDMAN H H, JACOVA C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria[J]. The Lancet Neurology, 2014, 13(6): 614-629. doi: 10.1016/S1474-4422(14)70090-0
    [3] JACK C R, BENNETT D A, BLENNOW K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease[J]. Alzheimer’s Dement, 2018, 14(4): 535-562. doi: 10.1016/j.jalz.2018.02.018
    [4] DHAPOLA R, HOTA S S, SARMA P, et al. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease[J]. Inflammopharmacology, 2021, 29(6): 1669-1681. doi: 10.1007/s10787-021-00889-6
    [5] LAFERLA F M, GREEN K N, ODDO S. Intracellular amyloid-β in Alzheimer’s disease[J]. Nature Reviews Neuroscience, 2007, 8(7): 499-509. doi: 10.1038/nrn2168
    [6] VERMA A, KUMAR WAIKER D, BHARDWAJ B, et al. The molecular mechanism, targets, and novel molecules in the treatment of Alzheimer’s disease[J]. Bioorganic Chemistry, 2022, 119: 105562. doi: 10.1016/j.bioorg.2021.105562
    [7] SEUBERT P, OLTERSDORF T, LEE M G, et al. Secretion of β-amyloid precursor protein cleaved at the amino terminus of the β-amyloid peptide[J]. Nature, 1993, 361(6409): 260-263. doi: 10.1038/361260a0
    [8] HAASS C, SCHLOSSMACHER M G, HUNG A Y, et al. Amyloid β-peptide is produced by cultured cells during normal metabolism[J]. Nature, 1992, 359(6393): 322-325. doi: 10.1038/359322a0
    [9] CHEN G F, XU T H, YAN Y, et al. Amyloid beta: structure, biology and structure-based therapeutic development[J]. Acta Pharmacologica Sinica, 2017, 38(9): 1205-1235. doi: 10.1038/aps.2017.28
    [10] BLENNOW K, DE LEON M J, ZETTERBERG H. Alzheimer’s disease[J]. The Lancet, 2006, 368(9533): 387-403. doi: 10.1016/S0140-6736(06)69113-7
    [11] MASTERS C L, SIMMS G, WEINMAN N A, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome[J]. Proceedings of the National Academy of Sciences, 1985, 82(12): 4245-4249. doi: 10.1073/pnas.82.12.4245
    [12] LEHMANN S, DUMURGIER J, AYRIGNAC X, et al. Cerebrospinal fluid A beta 1–40 peptides increase in Alzheimer’s disease and are highly correlated with phospho-tau in control individuals[J]. Alzheimer’s Research & Therapy, 2020, 12(1): 123.
    [13] BLENNOW K, DUBOIS B, FAGAN A M, et al. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease[J]. Alzheimer’s & Dementia, 2015, 11(1): 58-69.
    [14] SHAW L M, KORECKA M, CLARK C M, et al. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics[J]. Nature Reviews Drug Discovery, 2007, 6(4): 295-303. doi: 10.1038/nrd2176
    [15] BENZINGER T L S, BLAZEY T, JACK C R, et al. Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease[J]. Proceedings of the National Academy of Sciences, 2013, 110(47): E4502-E4509.
    [16] TEUNISSEN C E, VERBERK I M W, THIJSSEN E H, et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation[J]. The Lancet Neurology, 2022, 21(1): 66-77. doi: 10.1016/S1474-4422(21)00361-6
    [17] BILGEL M, AN Y, WALKER K A, et al. Longitudinal changes in Alzheimer’s-related plasma biomarkers and brain amyloid[J]. Alzheimer’s & Dementia, 2023, 19(10): 4335-4345.
    [18] AMFT M, ORTNER M, EICHENLAUB U, et al. The cerebrospinal fluid biomarker ratio Aβ42/40 identifies amyloid positron emission tomography positivity better than Aβ42 alone in a heterogeneous memory clinic cohort[J]. Alzheimer’s Research & Therapy, 2022, 14(1): 60.
    [19] WEINGARTEN M D, LOCKWOOD A H, HWO S Y, et al. A protein factor essential for microtubule assembly[J]. Proceedings of the National Academy of Sciences, 1975, 72(5): 1858-1862. doi: 10.1073/pnas.72.5.1858
    [20] WANG Y, MANDELKOW E. Tau in physiology and pathology[J]. Nature Reviews Neuroscience, 2016, 17(1): 22-35. doi: 10.1038/nrn.2015.1
    [21] DIXIT R, ROSS J L, GOLDMAN Y E, et al. Differential regulation of dynein and kinesin motor proteins by tau[J]. Science, 2008, 319: 1086-1089. doi: 10.1126/science.1152993
    [22] HANGER D P, ANDERTON B H, NOBLE W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease[J]. Trends Mol Med, 2009, 15(3): 112-119. doi: 10.1016/j.molmed.2009.01.003
    [23] MARTIN L, LATYPOVA X, TERRO F. Post-translational modifications of tau protein: implications for Alzheimer’s disease[J]. Neurochem Int, 2011, 58(4): 458-471. doi: 10.1016/j.neuint.2010.12.023
    [24] MIELKE M M, DAGE J L, FRANK R D, et al. Performance of plasma phosphorylated tau 181 and 217 in the community[J]. Nature Medicine, 2022, 28(7): 1398-1405. doi: 10.1038/s41591-022-01822-2
    [25] PALMQVIST S, JANELIDZE S, QUIROZ Y T, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer Disease vs other neurodegenerative disorders[J]. JAMA, 2020, 324(8): 772-781. doi: 10.1001/jama.2020.12134
    [26] ISHIKAWA H, BISCHOFF R, HOLTZER H. Mitosis and intermediate-sized filaments in developing skeletal muscle[J]. The Journal of Cell Biology, 1968, 38(3): 538-555. doi: 10.1083/jcb.38.3.538
    [27] PETZOLD A. Neurofilament phosphoforms: Surrogate markers for axonal injury, degeneration and loss[J]. Journal of the Neurological Sciences, 2005, 233(1-2): 183-198. doi: 10.1016/j.jns.2005.03.015
    [28] Lépinoux-Chambaud C, Eyer J. Review on intermediate filaments of the nervous system and their pathological alterations[J]. Histochemistry Cell Biology, 2013, 140(1): 13-22. doi: 10.1007/s00418-013-1101-1
    [29] KUHLE J, GAIOTTINO J, LEPPERT D, et al. Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome[J]. J Neurol Neurosurg Psychiatry, 2015, 86(3): 273-279. doi: 10.1136/jnnp-2013-307454
    [30] LU C H, Macdonald-Wallis C, Gray E, et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis[J]. Neurology, 2015, 84(22): 2247-2257. doi: 10.1212/WNL.0000000000001642
    [31] Bäckström DC, Eriksson Domellöf M, Linder J, et al. Cerebrospinal Fluid Patterns and the Risk of Future Dementia in Early, Incident Parkinson Disease[J]. JAMA Neurology, 2015, 72(10): 1175-1182. doi: 10.1001/jamaneurol.2015.1449
    [32] SCHERLING C S, HALL T, BERISHA F, et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration[J]. Annals of Neurology, 2014, 75(1): 116-126. doi: 10.1002/ana.24052
    [33] ZETTERBERG H, SKILLBäCK T, MATTSSON N, et al. Association of cerebrospinal fluid neurofilament light concentration with Alzheimer Disease progression[J]. JAMA Neurology, 2016, 73(1): 60-67. doi: 10.1001/jamaneurol.2015.3037
    [34] BACIOGLU M, MAIA L F, PREISCHE O, et al. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases[J]. Neuron, 2016, 91(1): 56-66. doi: 10.1016/j.neuron.2016.05.018
    [35] BRUREAU A, BLANCHARD-BREGEON V, PECH C, et al. NF-L in cerebrospinal fluid and serum is a biomarker of neuronal damage in an inducible mouse model of neurodegeneration[J]. Neurobiology of Disease, 2017, 104: 73-84. doi: 10.1016/j.nbd.2017.04.007
    [36] WESTON P S J, POOLE T, RYAN N S, et al. Serum neurofilament light in familial Alzheimer disease: A marker of early neurodegeneration[J]. Neurology, 2017, 89(21): 2167-2175. doi: 10.1212/WNL.0000000000004667
    [37] PREISCHE O, SCHULTZ S A, APEL A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease[J]. Nature Medicine, 2019, 25(2): 277-283. doi: 10.1038/s41591-018-0304-3
    [38] BRAUNEWELL K H, SZANTO A J K. Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+-sensor proteins[J]. Cell and Tissue Research, 2009, 335(2): 301-316. doi: 10.1007/s00441-008-0716-3
    [39] BURGOYNE R D. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signaling[J]. Nature Reviews Neuroscience, 2007, 8(3): 182-193. doi: 10.1038/nrn2093
    [40] TAN Z, JIANG J, TIAN F, et al. Serum visinin-like protein 1 is a better biomarker than neuron-specific enolase for seizure-induced neuronal injury: a prospective and observational study[J]. Frontiers in Neurology, 2020, 11: 567587. doi: 10.3389/fneur.2020.567587
    [41] TARAWNEH R, LEE J M, LADENSON J H, et al. CSF VILIP-1 predicts rates of cognitive decline in early Alzheimer disease[J]. Neurology, 2012, 78(10): 709-719. doi: 10.1212/WNL.0b013e318248e568
    [42] HALBGEBAUER S, STEINACKER P, RIEDEL D, et al. Visinin-like protein 1 levels in blood and CSF as emerging markers for Alzheimer’s and other neurodegenerative diseases[J]. Alzheimer’s Research & Therapy, 2022, 14(1): 175.
    [43] GROBLEWSKA M, MUSZYŃSKI P, WOJTULEWSKA-SUPRON A, et al. The Role of Visinin-Like Protein-1 in the Pathophysiology of Alzheimer’s Disease[J]. J Alzheimers Dis, 2015, 47(1): 17-32. doi: 10.3233/JAD-150060
    [44] MOTTER R, VIGO-PELFREY C, KHOLODENKO D, et al. Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease[J]. Annals of Neurology, 1995, 38(4): 643-648. doi: 10.1002/ana.410380413
    [45] VANMECHELEN E, VANDERSTICHELE H, DAVIDSSON P, et al. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization[J]. Neuroscience Letters, 2000, 285(1): 49-52. doi: 10.1016/S0304-3940(00)01036-3
    [46] BITTNER T, ZETTERBERG H, TEUNISSEN C E, et al. Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of β-amyloid (1–42) in human cerebrospinal fluid[J]. Alzheimer’s & Dementia, 2016, 12(5): 517-526.
    [47] LIFKE V, KOLLMORGEN G, MANUILOVA E, et al. Elecsys® Total-Tau and Phospho-Tau (181P) CSF assays: Analytical performance of the novel, fully automated immunoassays for quantification of tau proteins in human cerebrospinal fluid[J]. Clinical Biochemistry, 2019, 72: 30-38. doi: 10.1016/j.clinbiochem.2019.05.005
    [48] BAYART J, HANSEEUW B, IVANOIU A, et al. Analytical and clinical performances of the automated Lumipulse cerebrospinal fluid A beta(42) and T-Tau assays for Alzheimer’s disease diagnosis[J]. Journal of neurology, 2019, 266(9): 2304-2311. doi: 10.1007/s00415-019-09418-6
    [49] GORDON R F, MCDADE R L. Multiplexed quantification of human IgG, IgA, and IgM with the FlowMetrix system[J]. Clin Chem, 1997, 43(9): 1799-1801. doi: 10.1093/clinchem/43.9.1799
    [50] PRABHAKAR U, EIRIKIS E, DAVIS H M. Simultaneous quantification of proinflammatory cytokines in human plasma using the LabMAP assay[J]. J Immunol Methods, 2002, 260(1-2): 207-218. doi: 10.1016/S0022-1759(01)00543-9
    [51] OLSSON A, VANDERSTICHELE H, ANDREASEN N, et al. Simultaneous measurement of beta-amyloid(1-42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology[J]. Clin Chem, 2005, 51(2): 336-345. doi: 10.1373/clinchem.2004.039347
    [52] REIJN T S, RIKKERT MO, VAN GEEL W J A, et al. Diagnostic accuracy of ELISA and xMAP technology for analysis of amyloid beta(42) and tau proteins[J]. Clin Chem, 2007, 53(5): 859-865. doi: 10.1373/clinchem.2006.081679
    [53] WEISSLEDER R. Molecular imaging: exploring the next frontier[J]. Radiology, 1999, 212(3): 609-614. doi: 10.1148/radiology.212.3.r99se18609
    [54] GORDON B A, BLAZEY T M, SU Y, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study[J]. Lancet Neurol, 2018, 17(3): 241-250. doi: 10.1016/S1474-4422(18)30028-0
    [55] VILLEMAGNE V L, BURNHAM S, BOURGEAT P, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study[J]. Lancet Neurology, 2013, 12(4): 357-367. doi: 10.1016/S1474-4422(13)70044-9
    [56] Pemberton HG, Collij LE, Heeman F, et al. Quantification of amyloid PET for future clinical use: a state-of-the-art review[J]. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3508-3528. doi: 10.1007/s00259-022-05784-y
    [57] TIAN M, ZUO C, CIVELEK A C, et al. International nuclear medicine consensus on the clinical use of amyloid positron emission tomography in Alzheimer’s Disease[J]. Phenomics, 2023, 3(4): 375-389. doi: 10.1007/s43657-022-00068-9
    [58] SCHöLL M, MAASS A, MATTSSON N, et al. Biomarkers for tau pathology[J]. Molecular and Cellular Neuroscience, 2019, 97: 18-33. doi: 10.1016/j.mcn.2018.12.001
    [59] TIAN M, CIVELEK A C, CARRIO I, et al. International consensus on the use of tau PET imaging agent (18)F-flortaucipir in Alzheimer’s disease[J]. Eur J Nucl Med Mol Imaging, 2022, 49(3): 895-904. doi: 10.1007/s00259-021-05673-w
    [60] RISSIN D M, KAN C W, CAMPBELL T G, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations[J]. Nature Biotechnology, 2010, 28(6): 595-599. doi: 10.1038/nbt.1641
    [61] COHEN L, CUI N, CAI Y, et al. Single molecule protein detection with attomolar sensitivity using droplet digital enzyme-linked immunosorbent assay[J]. ACS Nano, 2020, 14(8): 9491-9501. doi: 10.1021/acsnano.0c02378
    [62] WANG D, WANG X, YE F, et al. An integrated amplification-free digital crispr/cas-assisted assay for single molecule detection of RNA[J]. ACS Nano, 2023, 17(8): 7250-7256. doi: 10.1021/acsnano.2c10143
    [63] REN M, DONG Y, WANG J, et al. Computer vision-assisted smartphone microscope imaging digital immunosensor based on click chemistry-mediated microsphere counting technology for the detection of aflatoxin B1 in peanuts[J]. Analytica Chimica Acta, 2023, 1278: 341687. doi: 10.1016/j.aca.2023.341687
    [64] LEIRS K, DAL DOSSO F, PEREZ-RUIZ E, et al. Bridging the Gap between digital assays and point-of-care testing: automated, low cost, and ultrasensitive detection of thyroid stimulating hormone[J]. Analytical Chemistry, 2022, 94(25): 8919-8927. doi: 10.1021/acs.analchem.2c00480
    [65] SHI Y, LU X, ZHANG L, et al. Potential value of plasma amyloid-β, total tau, and neurofilament light for identification of early Alzheimer’s disease[J]. ACS Chemical Neuroscience, 2019, 10(8): 3479-3485. doi: 10.1021/acschemneuro.9b00095
    [66] NI M, ZHU Z H, GAO F, et al. Plasma core alzheimer’s disease biomarkers predict amyloid deposition burden by positron emission tomography in chinese individuals with cognitive decline[J]. ACS Chemical Neuroscience, 2023, 14(1): 170-179. doi: 10.1021/acschemneuro.2c00636
    [67] XIE Q, NI M, GAO F, et al. Correlation between cerebrospinal fluid core Alzheimer’s disease biomarkers and β-amyloid PET in Chinese dementia population[J]. ACS Chemical Neuroscience, 2022, 13(10): 1558-1565. doi: 10.1021/acschemneuro.2c00120
    [68] SEINO Y, NAKAMURA T, HARADA T, et al. Quantitative measurement of cerebrospinal fluid amyloid-β species by mass spectrometry[J]. Journal of Alzheimer’s Disease, 2021, 79: 573-584. doi: 10.3233/JAD-200987
    [69] ZOU Y, MA X, MAO C, et al. Automated magnetic-bead-assisted sequential extraction technology for simultaneous detection of Aβ1-42 and Aβ1-40 in cerebrospinal fluid: An advance toward fully automated liquid chromatography-tandem mass spectrometry method[J]. Journal of Chromatography A, 2024, 1713: 1.
    [70] LEINENBACH A, PANNEE J, DüLFFER T, et al. Mass spectrometry–based candidate reference measurement procedure for quantification of amyloid-β in cerebrospinal fluid[J]. Clinical Chemistry, 2014, 60(7): 987-994. doi: 10.1373/clinchem.2013.220392
    [71] MCAVOY T, LASSMAN M E, SPELLMAN D S, et al. Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry[J]. Clinical Chemistry, 2014, 60(4): 683-689. doi: 10.1373/clinchem.2013.216515
    [72] BROS P, VIALARET J, BARTHELEMY N, et al. Antibody-free quantification of seven tau peptides in human CSF using targeted mass spectrometry[J]. Front Neurosci, 2015, 9: 302.
    [73] BJERKE M, ANDREASSON U, KUHLMANN J, et al. Assessing the commutability of reference material formats for the harmonization of amyloid-β measurements[J]. Clin Chem Lab Med, 2016, 54(7): 1177-1191. doi: 10.1515/cclm-2015-0733
    [74] LAME M E, CHAMBERS E E, BLATNIK M. Quantitation of amyloid beta peptides Aβ(1-38), Aβ(1-40), and Aβ(1-42) in human cerebrospinal fluid by ultra-performance liquid chromatography-tandem mass spectrometry[J]. Analytical biochemistry, 2011, 419(2): 133-139. doi: 10.1016/j.ab.2011.08.010
    [75] PANNEE J, PORTELIUS E, MINTHON L, et al. Reference measurement procedure for CSF amyloid beta (Aβ)1–42 and the CSF Aβ1–42/Aβ1–40 ratio-a cross-validation study against amyloid PET[J]. Journal of Neurochemistry, 2016, 139(4): 651-658. doi: 10.1111/jnc.13838
    [76] KORECKA M, FIGURSKI M J, LANDAU S M, et al. Analytical and clinical performance of amyloid-beta peptides measurements in CSF of ADNIGO/2 participants by an LC–MS/MS reference method[J]. Clinical Chemistry, 2020, 66(4): 587-597. doi: 10.1093/clinchem/hvaa012
    [77] ZOU Y, MA X, MAO C, et al. Automated magnetic-bead-assisted sequential extraction technology for simultaneous detection of Aβ1-42 and Aβ1-40 in cerebrospinal fluid: An advance toward fully automated liquid chromatography-tandem mass spectrometry method[J]. Journal of Chromatogrraphy A, 2024, 1713: 464531. doi: 10.1016/j.chroma.2023.464531
    [78] FENG L, HUO Z, XIONG J, et al. Certification of amyloid-beta (aβ) certified reference materials by amino acid-based isotope dilution high-performance liquid chromatography mass spectrometry and sulfur-based high-performance liquid chromatography isotope dilution inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2020, 92(19): 13229-13237. doi: 10.1021/acs.analchem.0c02381
    [79] BOULO S, KUHLMANN J, ANDREASSON U, et al. First amyloid β1-42 certified reference material for re-calibrating commercial immunoassays[J]. Alzheimer’s & Dementia, 2020, 16(11): 1493-1503.
    [80] GIANGRANDE C, VANEECKHOUTTE H, BOEUF A, et al. Development of a candidate reference measurement procedure by ID-LC-MS/MS for total tau protein measurement in cerebrospinal fluid (CSF)[J]. Clin Chem Lab Med, 2023, 61(7): 1235-1244. doi: 10.1515/cclm-2022-1250
    [81] ZANG Y, ZHOU X, PAN M, et al. Certification of visinin-like protein-1 (VILIP-1) certified reference material by amino acid-based and sulfur-based liquid chromatography isotope dilution mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2023, 415(1): 211-220. doi: 10.1007/s00216-022-04401-z
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  25
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 录用日期:  2024-03-27
  • 修回日期:  2024-03-28
  • 网络出版日期:  2024-07-04

目录

    /

    返回文章
    返回