留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国计量院光伏计量研究综述

孟海凤 张俊超 刘文德 徐楠 王萌 张碧丰 蔡川 满帅 邓文浩 熊利民 甘海勇

孟海凤,张俊超,刘文德,等. 中国计量院光伏计量研究综述[J]. 计量科学与技术,2024, 68(5): 92-99, 126 doi: 10.12338/j.issn.2096-9015.2024.0062
引用本文: 孟海凤,张俊超,刘文德,等. 中国计量院光伏计量研究综述[J]. 计量科学与技术,2024, 68(5): 92-99, 126 doi: 10.12338/j.issn.2096-9015.2024.0062
MENG Haifeng, ZHANG Junchao, LIU Wende, XU Nan, WANG Meng, ZHANG Bifeng, CAI Chuan, MAN Shuai, DENG Wenhao, XIONG Limin, GAN Haiyong. Research on Photovoltaic Metrology at the National Institute of Metrology, China: A Review[J]. Metrology Science and Technology, 2024, 68(5): 92-99, 126. doi: 10.12338/j.issn.2096-9015.2024.0062
Citation: MENG Haifeng, ZHANG Junchao, LIU Wende, XU Nan, WANG Meng, ZHANG Bifeng, CAI Chuan, MAN Shuai, DENG Wenhao, XIONG Limin, GAN Haiyong. Research on Photovoltaic Metrology at the National Institute of Metrology, China: A Review[J]. Metrology Science and Technology, 2024, 68(5): 92-99, 126. doi: 10.12338/j.issn.2096-9015.2024.0062

中国计量院光伏计量研究综述

doi: 10.12338/j.issn.2096-9015.2024.0062
基金项目: 中国计量科学研究院基本科研业务费重点领域项目 (AKYZD2313);国家质量基础设施体系专项项目(2023YFF0614800)。
详细信息
    作者简介:

    孟海凤(1983-),中国计量科学研究院副研究员,研究方向:光探测和光伏计量,邮箱:menghf@nim.ac.cn

    通讯作者:

    熊利民(1972-),中国计量科学研究院研究员,研究方向:光探测和光伏计量,邮箱:xlmin@nim.ac.cn

  • 中图分类号: TB96

Research on Photovoltaic Metrology at the National Institute of Metrology, China: A Review

  • 摘要: 光伏发电是最有前途的可再生清洁能源技术之一,而中国已成为世界上最大的光伏产品生产国、应用国和出口国。准确可靠地测量光伏产品的光电性能参数,对光伏领域相关的科学研究和产业发展至关重要。基于中国计量科学研究院建立的量值溯源和传递体系,我国光伏领域实现了关键参数的量值有效溯源和传递。综述了我国光伏领域量值溯源传递链的研究和建立情况,即从相关的最高标准——低温辐射计到终端应用光伏产品,并对下一阶段的研究进行展望。
  • 图  1  量值溯源金字塔

    Figure  1.  The traceability pyramid

    图  2  根据IEC 60904-4执行光伏量值传递的主要路径

    Figure  2.  Main routes for photovoltaic metrology dissemination according to IEC 60904-4

    图  3  基于激光(上图)和单色仪(下图)的低温辐射计基准装置照片

    Figure  3.  Photos of the cryogenic radiometer based on lasers (above) and a monochromator (below)

    图  4  光电探测器校准标准装置的示意图和照片。

    Figure  4.  Schematic diagram and photo of the standard equipment for photodetector calibration

    图  5  标准太阳电池原级标定标准装置示意图和照片

    Figure  5.  Schematic diagram and photo of the standard equipment for primary calibration of reference solar cells

    图  6  光伏电池I-V 特性测量系统的照片

    Figure  6.  Photo of the photovoltaic cell I-V characteristic measurement system

    图  7  光伏组件光谱响应度和光电性能参数测量系统示意图和照片。

    Figure  7.  Schematic diagrams and photos of the spectral responsivity and photoelectric parameter measurement systems for PV modules

    图  8  基于绝对辐射计的太阳辐照度校准装置

    Figure  8.  Calibration facility for solar irradiance based on an absolute radiometer

    图  9  光伏系统能效测量装置示意图

    Figure  9.  Schematic diagram of a PV system energy efficiency measurement device

    图  10  光伏组件光电性能户外测试系统

    Figure  10.  PV module outdoor measurement system

    图  11  新型薄膜光伏电池测量程序示意图

    Figure  11.  Schematic diagram of the measurement procedure for new-type thin-film photovoltaic cells

    图  12  2014年1月至2023年12月,中国计量院光伏计量实验室测量的最高效率值

    Figure  12.  The highest efficiency values measured by NIM’s PV metrology lab from January 2014 to December 2023

    图  13  太阳模拟器校准装置示意图

    Figure  13.  Schematic diagram of solar simulator calibration

  • [1] 中国光伏行业协会. 2022-2023年中国光伏产业发展路线图[EB/OL]. http://chinapv.org.cn/road_map/1137.html.
    [2] S. Winter, T. Wittchen, J. Metzdorf. Primary Reference Cell Calibration At The PTB Based on an Improved DSR Facility, [C]. Proc. 16th European Photovoltaic Solar Energy Conference, 2000.
    [3] S. Winter, T. Fey, I. Kröger, et al. Design, realization and uncertainty analysis of a laser-based primary calibration facility for solar cells at PTB[J]. Measurement, 2014, 51: 457-463. doi: 10.1016/j.measurement.2013.12.001
    [4] 孟海凤, 王萌, 戴源廷, 等. 地铁弓网燃弧特征光谱原位测试及研究[J]. 计量科学与技术, 2023, 67(9): 56-60,48. doi: 10.12338/j.issn.2096-9015.2023.0228
    [5] NIST. NET-ZERO ENERGY RESIDENTIAL TEST FACILITY (NZERTF) [EB/OL].https://www.nist.gov/el/net-zero-energy-residential-test-facility.
    [6] ISO. General requirements for the competence of testing and calibration laboratories : ISO/IEC 17025 [S]. ISO, 2017.
    [7] IEC. Photovoltaic devices - Part 1: Measurement of photovoltaic current-voltage characteristics : IEC 60904-1 [S]. Geneva: International Electrotechnical Commission, 2020.
    [8] IEC. Photovoltaic devices - Part 2: Requirements for photovoltaic reference devices : IEC 60904-2 [S]. Geneva: International Electrotechnical Commission, 2023.
    [9] IEC. Photovoltaic devices – Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data : IEC 60904-3 [S]. Geneva: International Electrotechnical Commission, 2019.
    [10] IEC. Photovoltaic devices - Part 4: Reference solar devices - Procedures for establishing calibration traceability : IEC 60904-4 [S]. Geneva: International Electrotechnical Commission, 2019.
    [11] IEC. Photovoltaic Devices: Part 9. Classification of solar simulator characteristic : IEC 60904-9 [S]. Geneva: International Electrotechnical Commission, 2020.
    [12] Haifeng Meng, Junchao Zhang, Wende Liu, et al. Metrology boosts the quality of China’s photovoltaic products[J]. OIML Bulletin, 2023, 3: 27-33.
    [13] 徐楠, 俞兵, 史学舜, 等, 低温辐射计计量比对研究[J]. 计量学报, 2022, 43(5): 578-582.
    [14] Haifeng Meng, Limin Xiong, Nan Xui, et al. Calibration of photo-detector’s absolute spectral responsivity in the wavelength range 300 nm to 1000 nm[J]. Proc. of SPIE, 2018, 10621: 106211T-1.
    [15] Yingwei He, Linmin Xiong, Junchao Zhang, et al. Primary Calibration of Solar Cells based on DSR Method at the National Institute of Metrology of China[C]. Proc. of SPIE, 2015, 9623: 96230S-1.
    [16] 张俊超, 熊利民, 孟海凤, 等. 标准太阳电池标定值计量方法研究[J]. 计量学报, 2017, 38(2): 171-174. doi: 10.3969/j.issn.1000-1158.2017.02.10
    [17] S Winter Kröger, D Friedrich, S Morozova, et al. Calibration of reference solar cells at standard test conditions[J]. Metrologia, 2021, 58: 02001. doi: 10.1088/0026-1394/58/1A/02001
    [18] Meng Haifeng, Xiong Limin, He Yingwei, et al. Calibration of Solar Cells’ Photoelectric Properties and Related Uncertainty Analysis[J]. Proc. of SPIE, 2014, 9233: 92331T-1.
    [19] 孟海凤, 熊利民, 张俊超, 等. 太阳电池光电性能参数校准方法研究[J]. 计量学报, 2017, 38(5): 567-570. doi: 10.3969/j.issn.1000-1158.2017.05.10
    [20] Junchao Zhang, Limin Xiong, Haifeng Meng, et al. Study on photoelectric parameter measurement method of high capacitance solar cell[J]. Proc. of SPIE, 2018, 10621: 1062121-1.
    [21] 张俊超, 熊利民, 孟海凤. 太阳能电池光电性能测试的辐照度补偿方法[P]. ZL 201910843722.6.
    [22] Meng H , Xiong L , Zhang J , et al. Accurate Measurement of New Type Non-silicon Solar Cells' Photoelectric Conversion Efficiency[J]. Journal of Physics Conference Series, 2018, 972: 012017.
    [23] Long Ye, Chengyue Zhou, Haifeng Meng, et al. Toward Reliable and Accurate Evaluation of Polymer Solar Cells Based on Low Band Gap Polymers[J]. J. Mater. Chem. C, 2015, 3: 564. doi: 10.1039/C4TC02449D
    [24] 孟海凤, 张俊超, 叶冯俊, 等. 新型太阳电池光电转换效率测量技术研究进展[J]. 影像科学与光化学, 2016, 34: 389-401. doi: 10.7517/j.issn.1674-0475.2016.05.389
    [25] Yong Cui, Ling Hong, Tao Zhang, et al. Accurate photovoltaic measurement of organic cells for indoor applications[J]. Joule, 2021, 5(5): 1016-1023. doi: 10.1016/j.joule.2021.03.029
    [26] Ligang Wang, Huanping Zhou, Junnan Hu, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells[J]. Science, 2019, 363: 265-270. doi: 10.1126/science.aau5701
    [27] Yong Wang, M. Ibrahim Dar, Luis K. Ono, et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%[J]. Science, 2019, 365: 591-595. doi: 10.1126/science.aav8680
    [28] Wu Shengfan, Li Zhen, Li Mu-Qing, et al. D metal–organic framework for stable perovskite solar cells with minimized lead leakage[J]. Nature Nanotechnology, 2020, 15: 934-940. doi: 10.1038/s41565-020-0765-7
    [29] Hui Ren, Shidong Yu , Lingfeng Chao, et al. Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction[J]. Nature Photonics, 2020, 14: 154-163. doi: 10.1038/s41566-019-0572-6
    [30] Siyang Wang, Liguo Tan, Junjie Zhou, et al. Over 24% efficient MA-free CsxFA1-xPbX3 perovskite solar cells[J]. Joule, 2022, 6: 1344-1356. doi: 10.1016/j.joule.2022.05.002
    [31] Zijian Huang, Yang Bai, Xudan Huang, et al, Anion-π interactions suppress phase impurities in FAPbI3 solar cells[J]. Nature, 2023, 7987: 623.
    [32] Meng Haifeng, Xiong Limin, He Yingwei, et al. Research on integrated system for solar simulator performance calibration according to IEC 60904-9[J]. Proc. of SPIE, 2011, 8201: 82012L-1. doi: 10.1117/12.916693
  • 加载中
图(13)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  36
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 录用日期:  2024-03-19
  • 修回日期:  2024-03-20
  • 网络出版日期:  2024-05-16

目录

    /

    返回文章
    返回