留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

输入功率对电磁混响室特征参数影响的实验研究

张昊民 郭晓涛 刘科 刘天鑫

张昊民,郭晓涛,刘科,等. 输入功率对电磁混响室特征参数影响的实验研究[J]. 计量科学与技术,2024, 68(8): 51-57 doi: 10.12338/j.issn.2096-9015.2024.0063
引用本文: 张昊民,郭晓涛,刘科,等. 输入功率对电磁混响室特征参数影响的实验研究[J]. 计量科学与技术,2024, 68(8): 51-57 doi: 10.12338/j.issn.2096-9015.2024.0063
ZHANG Haomin, GUO Xiaotao, LIU Ke, LIU Tianxin. Experimental Study on the Influence of Input Power on Characteristic Parameters of Electromagnetic Reverberation Chambers[J]. Metrology Science and Technology, 2024, 68(8): 51-57. doi: 10.12338/j.issn.2096-9015.2024.0063
Citation: ZHANG Haomin, GUO Xiaotao, LIU Ke, LIU Tianxin. Experimental Study on the Influence of Input Power on Characteristic Parameters of Electromagnetic Reverberation Chambers[J]. Metrology Science and Technology, 2024, 68(8): 51-57. doi: 10.12338/j.issn.2096-9015.2024.0063

输入功率对电磁混响室特征参数影响的实验研究

doi: 10.12338/j.issn.2096-9015.2024.0063
基金项目: 国家重点研发计划项目(2022YFF0604805)。
详细信息
    作者简介:

    张昊民(1997-),中国计量科学研究院在读研究生,研究方向:毫米波传感器计量,邮箱:zhanghaomin@nim.ac.cn

  • 中图分类号: TB973

Experimental Study on the Influence of Input Power on Characteristic Parameters of Electromagnetic Reverberation Chambers

  • 摘要: 电磁混响室的校准通常是在较低输入功率下面向场均匀性和归一化场强等特征参数进行,但在电磁兼容抗扰度测试等实际应用中,实际工作在较高输入功率条件下,目前相关国际和国内标准中对此差异是予以忽略的,没有给出具体理论或实验证明。设计并开展了具体的实验研究,确认了输入功率对电磁混响室特征参数的影响程度。其中,低输入功率下的校准采用基于三维光电场探头的快速校准技术方案,高输入功率下的参数测量与汽车零部件抗扰度测试的实际工作状态保持一致。实验结果表明,不同输入功率对场均匀性这一特征参数的影响基本在±0.5 dB以内,对归一化场强的影响在2 dB以内。进一步的,基于对实验结果的分析,给出了相应的电磁混响室校准和测试过程中对场均匀性和归一化场强标定的建议。
  • 图  1  电磁混响室装置图

    Figure  1.  Diagram of electromagnetic reverberation chamber setup

    图  2  低输入功率电磁混响室连接示意图

    Figure  2.  Schematic diagram of low input power electromagnetic reverberation chamber connection

    图  3  低输入功率混响室场均匀性确认遍历关系示意图

    Figure  3.  Schematic diagram of traversal relationship for confirming field uniformity in low input power reverberation chamber

    图  4  高输入功率电磁混响室连接示意图

    Figure  4.  Schematic diagram of high input power electromagnetic reverberation chamber connection

    图  5  高输入功率时监测输入功率值

    Figure  5.  Monitoring input power value at high input power

    图  6  高输入功率电磁混响室场均匀性确认遍历关系示意图

    Figure  6.  Schematic diagram of traversal relationship for confirming field uniformity in high input power electromagnetic reverberation chamber

    图  7  低输入功率和高输入功率场均匀性测量结果对比

    Figure  7.  Comparison of field uniformity measurement results between low and high input power

    图  8  低输入功率和高输入功率场均匀性测量结果平滑后对比

    Figure  8.  Comparison of smoothed field uniformity measurement results between low and high input power

    图  9  低输入功率和高输入功率场均匀性的差异

    Figure  9.  Difference in field uniformity between low and high input power

    图  10  归一化到输入功率为0 dBm时产生干扰场强的测量结果对比

    Figure  10.  Comparison of interference field strength measurement results normalized to 0 dBm input power

    图  11  归一化到输入功率为0dBm时产生干扰场强的测量结果曲线平滑对比

    Figure  11.  Smoothed comparison of interference field strength measurement results normalized to 0 dBm input power

    图  12  归一化到输入功率为0 dBm时产生干扰场强测量结果的差异

    Figure  12.  Differences in interference field strength measurement results normalized to 0 dBm input power

    表  1  低输入功率条件下的测试主要设备及附件

    Table  1.   Main testing equipment and accessories for low input power conditions

    设备名称 型号 主要参数
    矢量网络分析仪 ZVA24 频段:200 MHz~18 GHz
    发射天线 HL223 频段:200 MHz~1.3 GHz
    光电转换控制器 OEFS-C5-A10 频段:0.1 MHz~10 GHz
    三维光电场探头 SH-10EX 频段:0.1 MHz~10 GHz
    下载: 导出CSV

    表  2  高输入功率主要设备及附件

    Table  2.   Main equipment and accessories for high input power conditions

    设备名称 型号 主要参数
    信号源 E8257C 频段:250 KHz~40 GHz
    频谱仪 FSW 频段:200 MHz~13.6 GHz
    发射天线 HL223 频段:200 MHz~1.3 GHz
    光电转换控制器 OEFS-C5-A10 频段:0.1 MHz~10 GHz
    三维光电场探头 SH-10EX 频段:0.1 MHz~10 GHz
    功率计 E4412A 频段:10 MHz~18 GHz
    定向耦合器 C8998-10 频段:100 MHz~3 GHz
    功率放大器 NPWPA-00810200 频段:80 MHz~1 GHz
    下载: 导出CSV
  • [1] Chen X, Tang J, Li T, et al. Reverberation Chambers for Over-the-Air Tests: An Overview of Two Decades of Research[J]. IEEE Access, 2018, 6: 49129-49143.
    [2] Stek T, Hubrechsen A, Prinsloo D S, et al. Over-the-Air Noise Figure Characterization of mm-Wave Active Integrated Antennas Using a Reverberation Chamber[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(3): 1093-1101. doi: 10.1109/TMTT.2022.3217149
    [3] Remley K A, Pirkl R J, Wang C M, et al. Estimating and Correcting the Device-Under-Test Transfer Function in Loaded Reverberation Chambers for Over-the-Air Tests[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(6): 1724-1734. doi: 10.1109/TEMC.2017.2708985
    [4] Qi W J, Fang F, Xia W J, et al. A Compact Multi-Probe Reverberation Chamber for Over-the-Air Testing[J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2021, 36(9): 1196-1201. doi: 10.47037/2021.ACES.J.360911
    [5] Micheli D, Barazzetta M, Diamanti R, et al. Over-the-Air Tests of High-Speed Moving LTE Users in a Reverberation Chamber[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4340-4349. doi: 10.1109/TVT.2018.2795650
    [6] Li J, Qi Y H, Fan J. Over-the-air measurement for MIMO systems[J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2021, 22(8): 1046-1058.
    [7] Horansky R D, Remley K A. Flexibility in over-the-air testing of receiver sensitivity with reverberation chambers[J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2019, 13(15): 2590-2597.
    [8] Arnold M D, Jensen M A, Mehmood R. A Reconfigurable Over-the-Air Chamber for Testing Multi-Antenna Wireless Devices[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 5289-5298. doi: 10.1109/TAP.2023.3264574
    [9] 李春雷, 邓波, 高斌, 等. 混响室的仿真与优化[J]. 安全与电磁兼容, 2004(6): 33-35. doi: 10.3969/j.issn.1005-9776.2004.06.014
    [10] 崔耀中, 魏光辉, 范丽思, 等. 混响室发射天线指向对场均匀性影响研究[J]. 微波学报, 2011, 27(6): 42-46.
    [11] D A Hill. Plane wave integral representation for fields in reverberation chambers[J]. IEEE Trans, 1998, 40(3): 209-217.
    [12] P Corona, G Ferrara, M Migliaccio. Reverberating chamber electromagnetic field in presence of an unstirred component[J]. IEEE Trans, 2000, 42(2): 111-115.
    [13] P Corona, G Ferrara, M Migliaccio. Reverberating chambers as sources of stochastic electromagnetic fields[J]. IEEE Trans, 1996, 38(3): 348-356.
    [14] P. Corona, G. Ferrara, M. Migliaccio. A spectral approach for the determination of the reverberating chamber quality factor[J]. IEEE Trans, 1998, 40(2): 145-153.
    [15] P. Corona, J. Ladbury, G. Latmiral. Reverberation-chamber research-then and now: a review of early work and comparison with current understanding[J]. IEEE Transactions on Electromagnetic Compatibility, 2002, 44: 87-94. doi: 10.1109/15.990714
    [16] Yousaf J, Nah W, Hussein M I, et al. Characterization of Reverberation Chamber-A Comprehensive Review[J]. IEEE Access, 2020, 8: 226591-226608. doi: 10.1109/ACCESS.2020.3045028
    [17] 邢昊, 何梓滨, 吴梦娟, 等. 电场场强校准技术的研究进展[J]. 计量科学与技术, 2023, 67(3): 20-28. doi: 10.12338/j.issn.2096-9015.2023.0035
    [18] Migliaccio M, Gradoni G, Arnaut L R. Electromagnetic Reverberation: The Legacy of Paolo Corona[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 643-652. doi: 10.1109/TEMC.2016.2546183
    [19] Q Xu, K Chen, X Shen. Comparison of the Normalized Maximum Field Strength Using E-Field Probe and VNA Methods in a Reverberation Chamber[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(10): 2135-2139. doi: 10.1109/LAWP.2019.2938833
    [20] X. Guo, Z. He, Y. Zhang. Investigation of field uniformity validation in reverberation chamber using VNA [C]. 2015 7th Asia- Pacific Conference on Environmental Electromagnetics.
    [21] Chen X. On Statistics of the Measured Antenna Efficiency in a Reverberation Chamber[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(11): 5417-5424. doi: 10.1109/TAP.2013.2276920
    [22] Chen X. On Near-Field and Far-Field Correlations in Reverberation Chambers[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(1): 74-76. doi: 10.1109/LMWC.2018.2879786
    [23] Gifuni A, Bastianelli L, Moglie F, et al. Base-Case Model for Measurement Uncertainty in a Reverberation Chamber Including Frequency Stirring[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(6): 1695-1703. doi: 10.1109/TEMC.2017.2763627
    [24] Leferink F. Fast, Broadband, and High-Dynamic Range 3-D Field Strength Probe[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6): 1015-1021. doi: 10.1109/TEMC.2013.2256360
    [25] 杭晨哲, 徐定华, 原遵东. 实验室比对数据处理中卡方统计量研究[J]. 计量科学与技术, 2021, 65(5): 108-114. doi: 10.12338/j.issn.2096-9015.2020.9042
    [26] 苏腾, 郭敏, 刘贵斌, 等. 信号源端口电压驻波比测量方法研究[J]. 计量科学与技术, 2022, 66(7): 33-37.
    [27] International Electrotechnical Commission. Electromagnetic Compatibility (EMC)–Part 4-21: Testing and Measurement Techniques-–Reverberation Chamber Test Methods: IEC 61000-4-21[S]. EMC, 2011.
    [28] The International Organization for Standardization. Vehicle test methods for electrical disturbances from narrowband radiated electromagnetic energy–Part 1: General principles and terminology: ISO 11451-1[S]. ISO, 2015.
    [29] The International Organization for Standardization. Component test methods for electrical disturbances from narrowband radiated electromagnetic energy–Part 1: General principles and terminology: ISO 11452-1[S]. ISO, 2005.
    [30] CTIA Certification. Test Plan for Wireless Device Over-the-Air Performance—Method of Measurement for Radiated RF Power and Receiver Performance, Large-Form-Factor Integrated Device Addendum[Z]. CTIA, 2020.
    [31] 周鑫, 唐维, 张妍, 等. 网络线缆分析仪功率损耗校准标准器的研究[J]. 计量科学与技术, 2022, 66(9): 33-39. doi: 10.12338/j.issn.2096-9015.2022.0137
    [32] Adardour A, Andrieu G, Reineix A. On the Low-Frequency Optimization of Reverberation Chambers[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(2): 266-275. doi: 10.1109/TEMC.2013.2288001
    [33] Monsef F, Cozza A. A Possible Minimum Relevance Requirement for a Statistical Approach in a Reverberation Chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1728-1731. doi: 10.1109/TEMC.2015.2464318
    [34] Remley K A, Pirkl R J, Shah H A, et al. Uncertainty From Choice of Mode-Stirring Technique in Reverberation-Chamber Measurements[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6): 1022-1030. doi: 10.1109/TEMC.2013.2246570
    [35] Senic D, Remley K A, Wang C M J, et al. Estimating and Reducing Uncertainty in Reverberation-Chamber Characterization at Millimeter-Wave Frequencies[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 3130-3140. doi: 10.1109/TAP.2016.2556711
    [36] Xu Q, Xing L, Zhao Y, et al. A General Method to Calculate the Source-Stirred Correlations in a Well-Stirred Reverberation Chamber[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2(4): 169-173. doi: 10.1109/LEMCPA.2020.3034759
    [37] 陈钧, 曾博, 邓俊泳, 等. 样品长期稳定性等引入的不确定度对电磁兼容能力验证计划结果评价影响的探讨[J]. 计量科学与技术, 2022, 66(11): 64-67. doi: 10.12338/j.issn.2096-9015.2021.0252
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  48
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 录用日期:  2024-03-05
  • 修回日期:  2024-05-21
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回