留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非均匀采样的近场散射测量技术研究

司炜康 王维龙

司炜康,王维龙. 基于非均匀采样的近场散射测量技术研究[J]. 计量科学与技术,2024, 68(8): 71-77, 17 doi: 10.12338/j.issn.2096-9015.2024.0066
引用本文: 司炜康,王维龙. 基于非均匀采样的近场散射测量技术研究[J]. 计量科学与技术,2024, 68(8): 71-77, 17 doi: 10.12338/j.issn.2096-9015.2024.0066
SI Weikang, WANG Weilong. Nonuniform Frequency Sampling Technique for Near-Field Scattering Measurements[J]. Metrology Science and Technology, 2024, 68(8): 71-77, 17. doi: 10.12338/j.issn.2096-9015.2024.0066
Citation: SI Weikang, WANG Weilong. Nonuniform Frequency Sampling Technique for Near-Field Scattering Measurements[J]. Metrology Science and Technology, 2024, 68(8): 71-77, 17. doi: 10.12338/j.issn.2096-9015.2024.0066

基于非均匀采样的近场散射测量技术研究

doi: 10.12338/j.issn.2096-9015.2024.0066
基金项目: 国家重点研发计划(2022YFF0604804)。
详细信息
    作者简介:

    司炜康(1993-),中国计量科学研究院在读博士生,研究方向:电磁辐射与散射特性测量,邮箱:siwk@@nim.ac.cn

    通讯作者:

    王维龙(1964-),中国计量科学研究院研究员,研究方向:电磁兼容、电磁辐射与散射特性测量,邮箱:wangwl@nim.ac.cn

  • 中图分类号: TB973

Nonuniform Frequency Sampling Technique for Near-Field Scattering Measurements

  • 摘要: 传统频率步进 (Stepped frequency, SF)测量体制通过一组等间隔的离散点频信号合成大测量带宽。由于采样定理的限制,固定频率间隔数据所对应的时域信号将会呈周期出现,此时场地内的背景、多径干扰都有可能混叠至目标区域内,进而对成像和散射测量造成恶劣影响。围绕频率步进体制快速测量方法进行了探索,提出了一种基于非均匀采样的近场散射测量技术。分析了距离混叠效应对散射测量的影响,根据实际应用需求设计了采样函数的优化原则,通过泊松和公式与驻定相位原理(Principle of stationary phase, POSP)对信号包络进行赋形。针对传统非均匀采样重构方法所造成的散射图像退化问题,提出了一种与非均匀采样策略相适配的加权方法,在有效抑制混叠干扰的同时实现了高分辨率成像,并提升了近远场变换(Near Field to Far Field, NF-FF)的精度。
  • 图  1  均匀采样下距离混叠仿真示意

    Figure  1.  Illustration of range ambiguity under uniform sampling

    图  2  均匀分布、指数分布和加权平方根分布的一维距离像对比

    Figure  2.  Comparison of range profiles from uniform, exponential, and weighted square root frequency sampling

    图  3  指数分布、加权平方根分布和均匀分布频率采样曲线

    Figure  3.  Frequency sampling curves of uniform, exponential, and weighted square root frequency sampling

    图  4  数值仿真几何示意图

    Figure  4.  Diagram of numerical simulation

    图  5  均匀采样和非均匀采样时域图像对比

    Figure  5.  Comparison of time-domain images with uniform and nonuniform sampling

    图  6  均匀采样和非均匀采样成像对比

    Figure  6.  Comparison of uniform and nonuniform sampling imaging

    图  7  近远场变换结果对比(10 GHz)

    Figure  7.  Comparison of near-field to far-field transformation results (10 GHz)

    图  8  被测金属圆柱目标

    Figure  8.  Photo of the metal cylinder under test

    图  9  双圆柱成像结果对比

    Figure  9.  Comparison of imaging results of two cylinders

    表  1  三种频率分布的典型频率值(GHz)

    Table  1.   Typical frequency values of three frequency distributions

    频率分布 n=1 n=51 n=101 n=151 n=201
    均匀 10.00 11.00 12.00 13.00 14.00
    指数 10.00 10.72 11.48 12.31 13.19
    加权平方根 10.00 11.40 12.64 13.78 14.82
    频率分布 n=251 n=301 n=351 n=401 n=451
    均匀 15.00 16.00 17.00 18.00 19.00
    指数 14.13 15.14 16.23 17.39 18.64
    加权平方根 15.80 16.72 17.59 18.43 19.22
    下载: 导出CSV
  • [1] 何国瑜. 电磁散射的计算和测量[M]. 北京: 北京航空航天大学出版社, 2006.
    [2] Xu X, Narayanan R M. Three-dimensional Interferometric ISAR Imaging for Target Scattering Diagnosis and Modeling[J]. IEEE Transactions on Image Processing, 2001, 10(7): 1094-1102. doi: 10.1109/83.931103
    [3] Tan K, Chen X. Fast 3-D image reconstruction on nonregular UWB sparse MIMO planar array using scaling techniques[J]. IEEE Trans. Microwave Theory and Technique, 2021, 69(1): 222-234. doi: 10.1109/TMTT.2020.3019099
    [4] Luo H, Zhu Z, Jiang M, et al. An effective multipath ghost recognition method for sparse MIMO radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-11.
    [5] Xiang Y, Guo S, Xia S, et al. NLOS target positioning method based on UAV millimeter-wave radar[J]. IEEE Sensors Journal, 2024, 24(2): 1975-1987. doi: 10.1109/JSEN.2023.3338508
    [6] Kornprobst J, Knapp R, Mauermayer M M, et al. Accuracy and conditioning of surface-source based near-field to far-field transformations[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 4894-4908. doi: 10.1109/TAP.2020.3048497
    [7] Lahaie I J. An Improved version of the circular near field-tofar field transformation (CNFFFT)[C]. Proceedings of the 27th Annual Meeting of the Antenna Measurement Techniques Association, 2005.
    [8] Saurer M, Hofmann B, Eibert T F. A fully polarimetric multilevel fast spectral domain algorithm for 3-D imaging with irregular sample locations[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(9): 4231-4242. doi: 10.1109/TMTT.2022.3187984
    [9] Sun X, Wu Y, Zhang L, et al. Stepped frequency waveform optimization for formation targets detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
    [10] Zhao L, Liu Y. Ballistic target recognition based on 4-D point cloud using randomized stepped frequency radar[C]. IEEE Transactions on Aerospace and Electronic Systems, 2022.
    [11] Liu S, Cao Y, Yeo T S, et al. Adaptive clutter suppression in randomized stepped-frequency radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1317-1333. doi: 10.1109/TAES.2020.3040530
    [12] 许小剑. 雷达目标散射特性测量与处理新技术[M]. 北京: 国防工业出版社, 2017.
    [13] Wang L, Huang T, Liu Y. Randomized stepped frequency radars exploiting block sparsity of extended targets: A theoretical analysis[J]. IEEE Transactions on Signal Processing, 2021, 69: 1378-1393. doi: 10.1109/TSP.2021.3058444
    [14] Lyu M, Chen H, Yang J, et al. Sensing matrix optimization for random stepped-frequency signal based on two-dimensional ambiguity function[J]. Chinese Journal of Electronics, 2024, 33,(1): 161-174. doi: 10.23919/cje.2022.00.046
    [15] Gumbmann F, Schiessl A. Multistatic Short Range Imaging with a Nonuniform SFCW Concept[C]. Asia Pacific Microwave Conference-Proceedings, 2014.
    [16] Gumbmann F, Schiessl A. Short-range Imaging System with a Nonuniform SFCW Approach[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(4): 1345-1354. doi: 10.1109/TMTT.2017.2649501
    [17] Liu C, Li Z, Sun Q, et al. Three-dimensional sparse image reconstruction for terahertz surface layer holography with random step frequency[J]. Optics Letter, 2015, 40(14): 3384-3387. doi: 10.1364/OL.40.003384
    [18] Axelsson S R J. Analysis of random step frequency radar and comparison with experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 890-904. doi: 10.1109/TGRS.2006.888865
    [19] Gurbuz A C, Mcclellan J H, Scott W R. A compressive sensing data acquisition and imaging method for stepped frequency GPRs[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2640-2650. doi: 10.1109/TSP.2009.2016270
    [20] Ma Y, Hong H, Zhu X. Multiple moving-target indication for urban sensing using change detection-based compressive sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 416-420. doi: 10.1109/LGRS.2020.2977168
    [21] Gallet M, Mian A, Ginolhac G, et al. New robust sparse convolutional coding inversion algorithm for ground penetrating radar Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 12-14.
    [22] Wu Q, Lai Z, Amin M G. Through-the-wall radar imaging based on bayesian compressive sensing exploiting multipath and target structure[J]. IEEE Transactions on Computational Imaging, 2021, 7: 422-435. doi: 10.1109/TCI.2021.3071957
    [23] Bi D J, Xie Y L, Ma L, et al. Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(4): 777-791. doi: 10.1109/TIM.2017.2654578
    [24] Ishimaru A, Chen Y S. Thinning and broadbanding antenna arrays by unequal spacings[J]. IEEE Transactions on Antennas and Propagation, 2003, 13(1): 34-42.
    [25] Chow Y L. On grating plateaux of nonuniformly spaced arrays[J]. IEEE Transactions on Antennas and Propagation, 1965, 13(2): 208-215. doi: 10.1109/TAP.1965.1138391
    [26] Si W, Zhuge X. A nonuniform SFCW scheme for short range application[C]. 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2020.
    [27] 胡楚锋. 雷达目标 RCS 测试系统及微波成像诊断技术研究[D]. 西安: 西北工业大学,2007.
    [28] Luminati J E, Hale T B, Temple M A, et al. Doppler aliasing artifact filtering in SAR imagery using randomised stepped-frequency waveforms[J]. Electronics Letters, 2004, 40(22): 1447-1448. doi: 10.1049/el:20046440
    [29] Martorella M, Giusti E, Demi L, et al. Target recognition by means of polarimetric ISAR images[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 225-239. doi: 10.1109/TAES.2011.5705672
    [30] Vaupel T, Eibert T F. Comparison and application of Near-Field ISAR imaging techniques for far-field radar cross section determination[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 144-151. doi: 10.1109/TAP.2005.861549
    [31] Zhang Y X, Jiao Y C, Zhu M D, et al. A linear-scan-based wideband single-cut near-field RCS measurement technique with wide effective angle coverage[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(9): 2300-2304. doi: 10.1109/LAWP.2023.3286481
    [32] Watanabe T. Image-based radar cross section synthesis for a cluster of multiple static targets[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-13.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  16
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-04
  • 录用日期:  2024-03-18
  • 修回日期:  2024-03-18
  • 网络出版日期:  2024-05-28

目录

    /

    返回文章
    返回