留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定标热敏电阻型功率传感器定标结果的研究

聂禄 李向军 崔孝海 王梓灏 赵岩

聂禄,李向军,崔孝海,等. 定标热敏电阻型功率传感器定标结果的研究[J]. 计量科学与技术,2024, 68(8): 58-63 doi: 10.12338/j.issn.2096-9015.2024.0075
引用本文: 聂禄,李向军,崔孝海,等. 定标热敏电阻型功率传感器定标结果的研究[J]. 计量科学与技术,2024, 68(8): 58-63 doi: 10.12338/j.issn.2096-9015.2024.0075
NIE Lu, LI Xiangjun, CUI Xiaohai, WANG Zihao, ZHAO Yan. Study on Calibration Results of Thermistor-Type Power Sensors[J]. Metrology Science and Technology, 2024, 68(8): 58-63. doi: 10.12338/j.issn.2096-9015.2024.0075
Citation: NIE Lu, LI Xiangjun, CUI Xiaohai, WANG Zihao, ZHAO Yan. Study on Calibration Results of Thermistor-Type Power Sensors[J]. Metrology Science and Technology, 2024, 68(8): 58-63. doi: 10.12338/j.issn.2096-9015.2024.0075

定标热敏电阻型功率传感器定标结果的研究

doi: 10.12338/j.issn.2096-9015.2024.0075
基金项目: 国家质量基础设施体系(2021YFF0600304)。
详细信息
    作者简介:

    聂禄(1999-),中国计量大学在读研究生,研究方向:太赫兹器件、毫米波及太赫兹测量、传感及计量技术,邮箱:p22030854040@cjlu.edu.cn

    通讯作者:

    李向军(1976-),中国计量大学副教授,研究方向:太赫兹器件,邮箱:xiangjun_li@cjlu.edu.cn

    崔孝海(1973-),中国计量科学研究院研究员,研究方向:毫米波及太赫兹测量、传感及计量技术,邮箱:cuixh@nim.ac.cn

  • 中图分类号: TB973

Study on Calibration Results of Thermistor-Type Power Sensors

  • 摘要: 热敏电阻型功率计采用直流替代的方法测量微波、毫米波功率,为了补偿环境温度变化对测量带来的影响,功率计通常具备测量电桥和补偿电桥,以双电桥模式进行测量。用微量热计型功率基准定标被校同轴热敏电阻型功率传感器时,不能因为环境温度稳定而单独使用测量电桥,为了保证定标结果的有效性,在基准定标中不仅需要对环境温度进行补偿,还需要对双元件误差导致的陶瓷芯温度变化进行补偿。实验表明,在18 GHz、10 mW电平定标时,分别使用单、双电桥功率计测得N型同轴热敏电阻功率传感器的替代功率偏差为0.38%。波导热敏电阻型功率传感器为单元件结构,定标其有效效率时不需要考虑单、双电桥测量问题。
  • 图  1  N型同轴热敏电阻型功率传感器示意图及主要部件拆分图

    注:① RF输入组件;② 均温铜块内部陶瓷芯结构:放置两个测量RF功率的热敏电阻元件和两个温度补偿热敏电阻元件;③ 均温铜块;④ 焊接引线的印制板;⑤ 直流偏置连接器接头。

    Figure  1.  Schematic diagram and main component disassembly of N-type coaxial thermistor-type power sensor

    图  2  同轴热敏电阻型传感器陶瓷芯部件图和陶瓷芯部件等效原理图

    注:RrfRrf = R1 + R2)和 RcompRcomp = Rcomp1 + Rcomp2)分别为工作端电阻和补偿端电阻。

    Figure  2.  Ceramic core component diagram and equivalent structure schematic of coaxial thermistor-type sensor

    图  3  直流替代时同轴热敏电阻型传感器的等效电路图

    Figure  3.  Equivalent circuit diagram of N-type coaxial thermistor-type sensor during DC substitution

    图  4  波导热敏电阻型功率传感器示意图及主要部件拆分图

    注:① RF输入组件; ② 均温铜片:内含一个热敏电阻珠;③ 补偿端电阻固定铜块:内含一个热敏电阻珠;④ 直流偏置连接器接头。

    Figure  4.  Schematic diagram and main component disassembly of waveguide thermistor-type power sensor

    图  5  波导热敏电阻型功率传感器中热敏电阻珠位置图和 波导口横截面图

    Figure  5.  Thermistor bead position and waveguide port cross-section in waveguide thermistor-type power sensor

    图  6  功率计双电桥电路图,上图为射频电桥电路图,下图为补偿电桥电路图

    Figure  6.  Power meter dual-bridge circuit diagram: RF bridge circuit (top) and compensation bridge circuit (bottom)

    图  7  热敏电阻型功率传感器测量系统

    Figure  7.  Measurement system for thermistor-type power sensor

  • [1] CLAGUE F R. A calibration service for coaxial reference standards for microwave power[R]. NIST, 1995.
    [2] 孙伟杰. WR-15(50GHz-75GHz)微波功率国家基准测量技术研究[D]. 北京: 北京交通大学, 2014.
    [3] MA S, DING J, YUAN W, et al. Study on effective efficiency measurement of a type N thermistor mount at 10MHz[C]. 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), Fuzhou.
    [4] GU D, LU X, JAMROZ B F, et al. NIST-traceable microwave power measurement in a waveguide calorimeter with correlated uncertainties[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 2280-2287. doi: 10.1109/TIM.2018.2886731
    [5] 代明珍, 崔孝海, 刘欣萌. WR-28功率基准系统中等效源反射系数测量方法[J]. 计量学报, 2012, 33(1): 68-72. doi: 10.3969/j.issn.1000-1158.2012.01.15
    [6] ZHAO Y, LIU J, LIU X, et al. Design of microwave medium power meter with thermal equilibrium judgement algorithm[C]. 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou.
    [7] SHAN Y, MENG Y S, FILIPSKI P S. Evaluation of a calorimetric thermal voltage converter for RF–DC difference up to 1 GHz[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(2): 467-472. doi: 10.1109/TIM.2013.2278597
    [8] Vreede J P M D. Final Report of the comparison CCEM. RF-K8. CL: Calibration factor of thermistor mounts[J]. Metrologia, 2005, 42(1A): 01008. doi: 10.1088/0026-1394/42/1A/01008
    [9] CROWLEY T P, CLAGUE F R. A 2.4mm coaxial power standard at NIST[R]. NIST, 2001.
    [10] ASCROFT J T. 3.5 mm coaxial power standard[J]. IEE Proceedings - Science, Measurement and Technology, 1998, 145(4): 159-162. doi: 10.1049/ip-smt:19982099
    [11] KANG T W, KIM J H, YURCHUK E F, et al. Design, construction, and performance evaluation of a cryogenic 7-mm coaxial noise standard[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 439-443. doi: 10.1109/TIM.2007.891132
    [12] DE VREEDE J P M, KORFAGE W, PERSSON P, et al. International comparison for RF power in the frequency range up to 18 GHz[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 50(2): 409-413. doi: 10.1109/19.918154
    [13] DE VREEDE J P M, KORFAGE-JANSSEN W. International comparison for RF power in the frequency range up to 18 GHz[C]. Conference on Precision Electromagnetic Measurements. Conference Digest, Sydney.
    [14] 崔孝海, 曲璐. 蒙特卡罗方法在微波功率测量不确定度分析中的应用[J]. 计量学报, 2008, 29(1): 77-79.
    [15] 李世平, 许化龙. 评定测量系统不确定度的方法[J]. 系统工程与电子技术, 1998, 20(10): 40-44. doi: 10.3321/j.issn:1001-506X.1998.10.011
    [16] YUAN W, DING S, CUI X, et al. NIM microwave power calibration and measurement capabilities[C]. 2020 13th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies, 2020.
    [17] KOUDELNY A V, MALAY I M, PEREPELKIN V A, et al. Working standard of the unit of power of electromagnetic waves in the frequency range of 37.5–220 GHz[J]. Measurement Techniques, 2020, 63(1): 53-58. doi: 10.1007/s11018-020-01749-5
    [18] KWON J Y, HONG Y P, KANG N W. D-band waveguide microcalorimeter for millimeter-wave power standard[C]. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris.
    [19] ROY R, KUSH A K, DIXIT R P. Design and development of thermistor based power meter at 140 GHz frequency band[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(12): 1407-1414. doi: 10.1007/s10762-011-9837-y
    [20] SHIMAOKA K, KINOSHITA M, INOUE T. A broadband waveguide calorimeter in the frequency range from 50 to 110 GHz[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(6): 1828-1833. doi: 10.1109/TIM.2012.2225956
    [21] CROWLEY T P, XIAOHAI CUI. Design and evaluation of a WR-15 (50 to 75 GHz) microcalorimeter[C]. 2008 Conference on Precision Electromagnetic Measurements Digest, USA.
    [22] 朱大成, 崔孝海. WR19(40~60 GHz)矩形波导微量热计设计[J]. 计量学报, 2012, 33(2): 163-165. doi: 10.3969/j.issn.1000-1158.2012.02.14
    [23] JHA P, BASU A, KOUL S K. Broadband frequency tripler design at 40–60 GHz[C]. 2016 Asia-Pacific Microwave Conference (APMC), 2016.
    [24] 李勇, 崔孝海, 孙伟杰. WR-22微波功率基准工作原理及其不确定度[J]. 计量技术, 2014(4): 18-20.
    [25] CUI X, LI Y, GAO X, et al. Measurement and evaluation of the WR-28 calorimeter[C]. 77th ARFTG Microwave Measurement Conference, Baltimore.
    [26] XIAOHAI CUI, XINMENG LIU, YONG LI, et al. Design and measurement of a WR-28 calorimeter[C]. CPEM 2010, Daejeon.
    [27] HUANG Y, YUAN W, CUI X, et al. WR-42 waveguide microcalorimeter for thermistor mount calibration[C]. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris.
    [28] 刘欣萌. 高频和微波功率基准及其应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
    [29] 陈成仁. 同轴双元件测辐射热器座的直流-射频替代误差[J]. 宇航计测技术, 1981(4): 1.
    [30] ENGEN G F. A DC-RF substitution error in duel-element bolometer mounts[J]. IEEE Transactions on Instrumentation and Measurement, 1964, IM-13(2/3): 58-64. doi: 10.1109/TIM.1964.4313375
    [31] SELBY M C. Bolometric voltage and current (bolovac) standard for high and microwave frequencies[J]. Journal of Research of the National Bureau of Standards, Section C: Engineering and Instrumentation, 1968, 72C(1): 61. doi: 10.6028/jres.072C.006
  • 加载中
图(7)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  24
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-12
  • 录用日期:  2024-03-26
  • 修回日期:  2024-05-22
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回