留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于单定向耦合器的净馈入功率测量方法

林浩宇 黄攀 谢晶 刘志鹏

林浩宇,黄攀,谢晶,等. 一种基于单定向耦合器的净馈入功率测量方法[J]. 计量科学与技术,2024, 68(5): 11-16, 76 doi: 10.12338/j.issn.2096-9015.2024.0083
引用本文: 林浩宇,黄攀,谢晶,等. 一种基于单定向耦合器的净馈入功率测量方法[J]. 计量科学与技术,2024, 68(5): 11-16, 76 doi: 10.12338/j.issn.2096-9015.2024.0083
LIN Haoyu, HUANG Pan, XIE Jing, LIU Zhipeng. A Net Power Measurement Method Based on a 3-Port Directional Coupler[J]. Metrology Science and Technology, 2024, 68(5): 11-16, 76. doi: 10.12338/j.issn.2096-9015.2024.0083
Citation: LIN Haoyu, HUANG Pan, XIE Jing, LIU Zhipeng. A Net Power Measurement Method Based on a 3-Port Directional Coupler[J]. Metrology Science and Technology, 2024, 68(5): 11-16, 76. doi: 10.12338/j.issn.2096-9015.2024.0083

一种基于单定向耦合器的净馈入功率测量方法

doi: 10.12338/j.issn.2096-9015.2024.0083
基金项目: 质量技术基础能力建设(ANL2306)
详细信息
    作者简介:

    林浩宇(1986-),中国计量科学研究院副研究员,研究方向:场强及电磁兼容计量技术研究、场强标准装置研制,邮箱:linhy@nim.ac.cn

  • 中图分类号: TB973

A Net Power Measurement Method Based on a 3-Port Directional Coupler

  • 摘要: 为解决无线电计量领域中的净馈入功率测量问题,提出了一种基于单定向耦合器且考虑失配修正的净馈入功率测量方法,并开展了不确定度评定。首先,根据微波网络理论并结合单定向耦合器信号流图,推导出了净馈入功率表达式;其次,开展了两项测量实验以验证所提出的测量方法,实验结果表明,利用该方法计算净馈入功率其典型误差不超过0.1 dB,且受阻抗失配影响较小。实验同时还证明了该方法适用于电场探头校准,能够减小由于净馈入功率测量误差所导致的标准场误差。最后,利用蒙特卡罗法进行了不确定度评定,结果表明利用该方法测量净馈入功率,其典型标准不确定度小于1.3%。该净馈入功率测量方法具有精度高、计算过程简便等优点,在以场强计量为代表的无线电计量领域中有着良好的应用前景。
  • 图  1  双定向耦合器示意图

    Figure  1.  The schematic diagram of the dual directional coupler

    图  2  单定向耦合器的信号流图

    Figure  2.  The signal flow graph for a 3-port directional coupler

    图  3  实验(a)布置图

    Figure  3.  The arrangement of experiment (a)

    图  4  不同测量方法所得到的净馈入功率的测量误差

    Figure  4.  The measurement errors of the net power calculated using different methods

    图  5  各功率探头的反射系数以及双定向耦合器的方向性

    Figure  5.  The reflection coefficients (RCs) of the power sensors and the directivity of the coupler

    图  6  实验(b)系统原理图

    Figure  6.  The schematic diagram of experiment (b)

    图  7  GTEM室输入端口处的实验布置情况

    Figure  7.  The experiment arrangement at the input port of the GTEM cell

    图  8  GTEM室内部的实验布置情况

    Figure  8.  The experiment arrangement in the GTEM cell

    图  9  两次测量得到的电场强度及相对误差

    Figure  9.  The measured E-field strength and the relative deviation

    表  1  所有频点的不确定度评定结果

    Table  1.   The uncertainty evaluation results at all the frequency points

    Fre.(GHz)Mean(W)Std(W)urel
    10.07990.00101.20%
    20.08020.00101.20%
    30.08000.00101.20%
    40.08060.00101.20%
    50.07980.00101.22%
    60.08030.00101.22%
    70.07960.00101.23%
    80.07900.00101.25%
    90.08240.00111.30%
    10
    0.07710.00111.36%
    110.08180.00111.36%
    120.07970.00111.37%
    130.08430.00121.38%
    140.08060.00111.32%
    150.08060.00101.27%
    160.08230.00101.34%
    170.07700.00131.85%
    180.07720.00162.25%
    下载: 导出CSV
  • [1] Y. P. Hong, J. I. Park, T. W. Kang, et al. Ka-band Electric-Field Probe Calibration System With Rotating and Linear Motion[J]. IEEE Trans. Instrum. Meas., 2021, 99: 1.
    [2] M. Ali, M. Perenzoni, D. Stoppa. A Methodology to Measure Input Power and Effective Area for Characterization of Direct THz Detectors[J]. IEEE Trans. Instrum. Meas. , 2016, 65(5): 1225 − 1231.
    [3] F. Musolino. Measurement of IC-Conducted Emissions by Employing a Backward-Wave Directional Coupler[J]. IEEE Trans. Instrum. Meas., 2010, 59(7): 1983 − 1985. doi: 10.1109/TIM.2010.2047970
    [4] 万思嘉, 钱承, 周镒, 等. 电场探头校准及系统实现[J]. 安全与电磁兼容, 2021(6): 65 − 68.
    [5] 王炳文, 郑久寿, 陈潇然. 基于电磁兼容风险评估方法的EMC整改研究[J]. 安全与电磁兼容, 2022(5): 60 − 65.
    [6] 周峰, 王景伟, 熊宇飞, 等. IEEE STD 1309-2013电场校准标准的公式与计算讨论[J]. 计量学报, 2017, 38(6): 763 − 764.
    [7] 邢浩, 何梓滨, 吴梦娟, 等. 电场场强校准技术的研究进展[J]. 计量科学与技术, 2023, 67(3): 20 − 28,42.
    [8] 孙思扬, 陈晓晨, 戴巡, 等. 多探头球面近场测试系统校准方法及对准角度误差分析[J]. 计量技术, 2018, 62(12): 78 − -81.
    [9] 梁庆凡, 孙标, 许方平, 等. 高压仪器设备计量过程中高压工频电场强度探究[J]. 计量科学与技术, 2021, 65(9): 22 − 25,21.
    [10] 刘潇, 赵兴, 洪力, 等. 微波暗室静区性能评测及不确定度分[J]. 计量科学与技术, 2022, 66(4): 89 − 94.
    [11] 田梦, 李勇, 刘士暄. 无线电功率计量技术发展及国际关键对比[J]. 计量技术, 2014, 58(6): 20 − -23.
    [12] 周鑫, 沈庆飞, 李安香, 等. 新一代无线设备最大辐射功率测试方法分析[J]. 计量科学与技术, 2021, 65(6): 9 − 13.
    [13] X. L, M. Xie, D. Li, et al. A method to calculate the net power delivered in to a TEM cell using a direction coupler in a probe calibration[J]. Applied Mechanics and Materials, 2014, 475-476: 23 − 26.
    [14] M. Kanda, R. D. Orr. A radio-frequency power delivery system: procedures for error analysis and self-calibration[Z]. US National Bureau of Standards Technical, Gaithersburg, 1985.
    [15] Zhong Chen, D. Lewis. Evaluating Uncertainties in Net Power Delivery using Dual Directional Couplers[C]. Proceedings of the International Symposium on Electromagnetic Compatibility, Chicago, 2005: 782 − 786.
    [16] Jinyuan Li. Improved Net Power Delivery Using a Directional Coupler[C]. Proceedings of the International Conference on Intelligent Computing, Automation and Applications(ICAA), Nanjing, 2021: 426 − 431.
    [17] M. Takehiro. Systematic and Random Errors in the Net Power Measurement Using a Reflectometer[J]. IEEE Trans. Instrum. Meas. , 2021, 70: 1 − 10.
    [18] D. Li, Z. Song, D. Meng. Comparison of two measurement methods on net power delivery with dual directional couplers[C]. Proceedings of the IEEE Conference on Antenna Measurement and Applications (CAMA), 2017: 374 − 376.
    [19] IEEE. IEEE Standard for Calibration of Electromagnetic Field Sensors and Probes (Excluding Antennas) from 9 kHz to 40 GHz: IEEE Standard 1309 − 2013[S]. New York, 2013.
    [20] D. Gentle. Mismatch corrections for the extrapolation range[Z]. National Physical Laboratory, Teddington, 2006.
    [21] BIPM, IEC, IFCC, et al. Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM): JCGM 100: 2008[S]. Paris, 2008.
    [22] 曹芸, 陈怀艳, 韩洁. 采用MCM对GUM法测量不确定度评定的验证方法研究[J]. 宇航计测技术, 2012, 32(2): 75 − 78.
    [23] 刘园园, 杨健, 赵希勇, 等. GUM法和MCM法评定测量不确定度对比分析[J]. 计量学报, 2018, 39(1): 135 − 139.
    [24] 任孝平, 王健, 何运飞, 等. 基于GUM的比对数据处理方法和MCM方法比较[J]. 计量技术, 2017, 12: 95 − 99.
    [25] The National Institute of Standards and Technology (NIST)[EB/OL]. [2024-03-09].https://uncertainty.nist.gov/.
    [26] 方兴华, 宋明顺, 顾龙芳, 等. 基于自适应蒙特卡罗方法的测量不确定度评定[J]. 计量学报, 2016, 37(4): 452 − 456.
    [27] 崔孝海, 曲璐. 蒙特卡罗方法在微波功率测量不确定度分析中的应用[J]. 计量学报, 2008, 29(1): 77 − 79.
    [28] 陈怀艳, 曹芸, 韩洁. 基于蒙特卡罗法的测量不确定度评定[J]. 电子计量与仪器学报, 2011, 25(4): 301 − 308.
    [29] 王伟, 宋明顺, 陈意华, 等. 蒙特卡罗方法在复杂模型测量不确定度评定中的应用[J]. 仪器仪表学报, 2008, 29(7): 1446 − 1449.
    [30] T. Lafarge, A. Possolo. NIST Uncertainty Machine — User’s Manual[J]. National Institute of Standards and Technology, 2013, 7: 10.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  44
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 录用日期:  2024-04-07
  • 修回日期:  2024-04-09
  • 网络出版日期:  2024-05-17

目录

    /

    返回文章
    返回