留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅析等效源反射系数以及K. Shimaoka测量方法的局限性

贾超 张一航 陈硕 李勇 崔孝海

贾超,张一航,陈硕,等. 浅析等效源反射系数以及K. Shimaoka测量方法的局限性[J]. 计量科学与技术,2024, 68(8): 32-37 doi: 10.12338/j.issn.2096-9015.2024.0090
引用本文: 贾超,张一航,陈硕,等. 浅析等效源反射系数以及K. Shimaoka测量方法的局限性[J]. 计量科学与技术,2024, 68(8): 32-37 doi: 10.12338/j.issn.2096-9015.2024.0090
JIA Chao, ZHANG Yihang, CHEN Shuo, LI Yong, CUI Xiaohai. Analysis of the Equivalent Source Reflection Coefficient and Limitations of K. Shimaoka’s Measurement Method[J]. Metrology Science and Technology, 2024, 68(8): 32-37. doi: 10.12338/j.issn.2096-9015.2024.0090
Citation: JIA Chao, ZHANG Yihang, CHEN Shuo, LI Yong, CUI Xiaohai. Analysis of the Equivalent Source Reflection Coefficient and Limitations of K. Shimaoka’s Measurement Method[J]. Metrology Science and Technology, 2024, 68(8): 32-37. doi: 10.12338/j.issn.2096-9015.2024.0090

浅析等效源反射系数以及K. Shimaoka测量方法的局限性

doi: 10.12338/j.issn.2096-9015.2024.0090
详细信息
    作者简介:

    贾超(1986-),中国计量科学研究院工程师,研究方向:散射参数溯源与测量技术,邮箱:jiachao@nim.ac.cn

    通讯作者:

    崔孝海(1973-),中国计量科学研究院研究员,研究方向:毫米波及太赫兹测量、传感及计量技术,邮箱:cuixh@nim.ac.cn

  • 中图分类号: TB973

Analysis of the Equivalent Source Reflection Coefficient and Limitations of K. Shimaoka’s Measurement Method

  • 摘要: 等效源反射系数在微波功率测量与测量结果的不确定度评定中占有决定位置。首先介绍了在稳幅信号源系统中的源反射系数,和使用三端口器件测量功率比值时等效源反射系数之间的关系,从失配因子的角度解释了等效源反射系数中“等效”的含义。其次,简要介绍了日本K. Shimaoka提出的利用网络分析仪与三端口器件测量等效源反射系数方法的工作原理与使用的局限性。最后,以N型功分器和定向耦合器为测量对象,基于K.S方法与传统公式方法在1~18GHz频段进行了相关实验与结果的比较与验证。结果表明,K.Shimaoka的等效源反射系数测量方法具有一定局限性,由于该计算方法中获得的传输系数之差较小,该项容易对细微变化敏感,因此不适用于使用方向性较好的三端口器件(如:定向耦合器)时的等效源反射系数测量。
  • 图  1  稳幅信号源示意图

    Figure  1.  Schematic diagram of amplitude-stabilized signal source

    图  2  直接比较法示意图

    Figure  2.  Schematic diagram of direct comparison method

    图  3  失配空气线组合体测量等效源反射系数示意图

    Figure  3.  Schematic diagram of equivalent source reflection coefficient measurement for mismatched air line combination

    图  4  测量功分器示意图

    Figure  4.  Schematic diagram of power divider measurement

    图  5  测量定向耦合器示意图

    Figure  5.  Schematic diagram of directional coupler measurement

    图  6  定向耦合器基于公式(6)中的分母数值

    Figure  6.  Denominator values in equation (6) for directional couplers

    图  7  功分器基于公式(6)中的分母数值

    Figure  7.  Denominator values in equation (6) for power dividers

    图  8  定向耦合器方向性在K.S方法与传统公式下的测量值比较

    Figure  8.  Comparison of directionality measurements for directional couplers using K.S. method and traditional formulas

    图  9  定向耦合器等效源反射系数在K.S方法与传统公式法下的测量值比较(模值与相角)

    Figure  9.  Comparison of equivalent source reflection coefficient measurements (magnitude and phase angle) for directional couplers using K.S. method and traditional formula method

  • [1] MENG Y S, SHAN Y. Note on handling source mismatch in RF power measurement and metrology[C]. Conference on Precision Electromagnetic Measurements, 2018.
    [2] LIU J W, YUAN W Z, ZHAO W, et al. Calibration principle and correction factor for flow calorimeter in RF medium-power measurement[J]. IEEE Transaction on Instrumentation and measurement, 2023, 72: 8004708.
    [3] 黎明, 李再奎, 史清林. 定向耦合器与检波器组成等效信号源反射系数的分析[J]. 齐齐哈尔师范学院学报(自然科学版), 1995, 15(2): 15-17.
    [4] LAI H W, TSUI C M, YANG S L, et al. On propagation of uncertainties through the measurement models of two calibration methods for microwave power splitters[C]. 2020 Conference on precision electromagnetic measurements (CPEM), 2020.
    [5] ENGEN G F. Amplitude stabilization of a microwave signal source[J]. IRE Trans Microwave Theory Tech, 1958, MTT-6: 202-206.
    [6] DINH DD, LANCASTER MJ. Microwave power sensors with integrated filtering function for transfer power standards[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(3): 308-311. doi: 10.1109/LMWC.2020.2969570
    [7] DING JX, MA SS, YUAN WZ, et. al. A new method for measuring calibration factors of Microwave power transfer standard[C]. 8th IEEE MTT-S International Wireless Symposium (IWS) part of China Microwave Week, 2021.
    [8] 朱军, 李建一, 王增浩. 低反射系数等效信号源的测试方法研究[J]. 中国测试技术, 2008, 34(3): 34-36.
    [9] RUEFENACHT J, WOLLENSACK M, HOFFMANN J, et al. Practical hints: splitter characterization[R]. METAS, 2015.
    [10] SHIMAOKA K. A new method for measuring accurate equivalent source reflection coefficient of three-port devices[C]. Conference on Precision Electromagnetic Measurements, 2018.
    [11] TOROK A, JANIK D, PEINELT W, et al. Efficient broadband method for equivalent source reflection coefficient measurements[J]. IEEE Trans Instrument & Measurement, 2001, 50(2): 361-366.
    [12] KIM JH, KANG JS, KWON, JY, et al. A wide-band method to measure the equivalent reflection coefficient of signal sources[C]. 79th ARFTG Microwave Measurement Conference, 2012.
    [13] 陈云梅, 杨春涛. 用大失配功率座法测量稳幅环路的等效信号源[J]. 宇航计测技术, 2002, 22(1): 7-12. doi: 10.3969/j.issn.1000-7202.2002.01.002
    [14] 方维海, 温鑫, 张璐, 等. 信号源复反射系数测量技术研究[J]. 微波学报, 2014, 30(3): 63-66.
    [15] 崔孝海, 梁伟军, 赵巍, 等. 微波功率计中校准信号源反射系数测量方法: 201610804858.2[P]. 2017-02-15.
    [16] 王晋淦. 信号发生器源反射系数的测量方法[J]. 电子测量与仪器学报, 1987, 1(3): 1-10.
    [17] CUI GY, LI Y, YUAN WZ, et al. Non-destructive measurement of equivalent source reflection coefficient using a tuner[C]. 15th UK-Europe-China Workshop on Millimeter-waves and Terahertz Technologies, 2022.
    [18] 张翠翠, 王益, 王建忠. 有源器件端口反射系数测量方法分析[J]. 太赫兹科学与电子信息学报, 2015, 13(2): 267-271. doi: 10.11805/TKYDA20150217.267
    [19] Reichel T. Procedure for measuring the equivalent reflection coefficient of power splitter[R]. Rohde & Schwarz Munich, 1998.
    [20] 陈硕, 袁文泽, 贾超, 等. 等效源反射系数及其在线测量方法的研究[J]. 计量科学与技术, 2023, 67(4): 70-76.
    [21] KANG TW, KWON JY, PARK JI, et al. RF and microwave power standards from 10MHz to 40GHz over decades[J]. Journal of Electromagnetic Engineering and Science, 2018, 18(2): 88-93. doi: 10.26866/jees.2018.18.2.88
    [22] BOTELLO, REREA M, CROWLEY TP, et al. CENAM's Primary Standard for Microwave power up to 18GHz[C]. Conference on Precision Electromagnetic Measurements, 2016.
    [23] RAKONJAC P, MITROVIC Z, MILANOVIC I, et al. Improved method for calibration and nonlinearity correction of microwave power sensor[J]. Tehnicki Vjsenik-thchnical Gazette, 2022, 29(2): 415-427.
    [24] BOTELLO, REREA M, CROWLEY TP, et al. A 2.4mm coaxial microcalorimeter for use as millimeter-wave power standard at CENAM[J]. IEEE Transaction on Instrument and Measurement, 2021, 70: 1001910.
    [25] BOTELLO, REREA M, CROWLEY TP, et al. CENAM's Primary standard for high frequency power up to 50GHz[C]. Conference on Precision Electromagnetic Measurements, 2018.
    [26] BAKTI AN, KWON JY, CHO C, et al. Millimeter-wave power standard transfer systems from 50GHz to 330GHz[C]. Conference on Precision Electromagnetic Measurements, 2020.
    [27] GU DZ, LU XF, LAMROZ B, et al. A self-calibrated transfer standard for microwave calorimetry[C]. Conference on Precision Electromagnetic Measurements, 2018.
    [28] DING N, CUI XH, LI Y, et al. Application of Monte Carlo method in uncertainty analysis of mismatch factor[C]. Conference on Precision Electromagnetic Measurements, 2018.
    [29] 冯亮, 张露妍. 浅析定向耦合器在中功率计校准中的应用[J]. 仪器仪表标准化与计量, 2014, 1: 43-45. doi: 10.3969/j.issn.1672-5611.2014.01.015
  • 加载中
图(9)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  26
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 录用日期:  2024-05-06
  • 修回日期:  2024-05-06
  • 网络出版日期:  2024-06-27

目录

    /

    返回文章
    返回