留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SI单位变革下原子尺度扫描探针显微术的计量空间

李剑桥 施玉书 王芳 李伟

李剑桥,施玉书,王芳,等. SI单位变革下原子尺度扫描探针显微术的计量空间[J]. 计量科学与技术,2024, 68(6): 49-54 doi: 10.12338/j.issn.2096-9015.2024.0123
引用本文: 李剑桥,施玉书,王芳,等. SI单位变革下原子尺度扫描探针显微术的计量空间[J]. 计量科学与技术,2024, 68(6): 49-54 doi: 10.12338/j.issn.2096-9015.2024.0123
LI Jianqiao, SHI Yushu, WANG Fang, LI Wei. Metrological Space of Atomic-Scale Scanning Probe Microscopy under the SI Unit Redefinition[J]. Metrology Science and Technology, 2024, 68(6): 49-54. doi: 10.12338/j.issn.2096-9015.2024.0123
Citation: LI Jianqiao, SHI Yushu, WANG Fang, LI Wei. Metrological Space of Atomic-Scale Scanning Probe Microscopy under the SI Unit Redefinition[J]. Metrology Science and Technology, 2024, 68(6): 49-54. doi: 10.12338/j.issn.2096-9015.2024.0123

SI单位变革下原子尺度扫描探针显微术的计量空间

doi: 10.12338/j.issn.2096-9015.2024.0123
基金项目: 国家重点研发计划(2021YFA1202801);中央公益类科研机构的基础研究经费(AKYCX2309)。
详细信息
    作者简介:

    李剑桥(1993-),中国计量科学研究院博士后,研究方向:扫描探针显微镜计量校准,邮箱:lijianqiao@nim.ac.cn

    通讯作者:

    施玉书(1982-),中国计量科学研究院研究员,研究方向:纳米计量技术、精密仪器测量等,邮箱:shiys@nim.ac.cn

  • 中图分类号: TB921

Metrological Space of Atomic-Scale Scanning Probe Microscopy under the SI Unit Redefinition

  • 摘要: 2018年第26届国际计量大会建议采用硅{220}晶面间距作为米定义的复现方法之一,以满足不断缩小的物理尺寸对原子级准确度计量的需求。目前能直接表征硅晶格的仪器主要有X射线衍射仪、透射电子显微镜和扫描探针显微镜。简要介绍了硅晶格常数溯源方式在不同测量原理下的国内外应用和发展现状。针对扫描探针显微术,根据不同种类扫描探针显微镜的测量原理,主要综述了扫描隧道显微镜、原子力显微镜和qPlus原子力显微镜在原子尺度水平和垂直维度下的空间计量校准及其应用前景。硅晶格常数作为SI单位变革的重要内容,开展基于硅晶格常数的扫描探针显微技术计量研究,将助力我国新一代纳米计量体系的建立,提升我国在纳米计量领域的国际地位和话语权。
  • 图  1  基于XRD技术研制的X射线晶格比较仪

    Figure  1.  X-ray lattice comparator developed based on XRD technology

    图  2  TEM中基于硅晶格常数的线宽测量原理和溯源至硅晶格常数的22 nm和45 nm线宽标准器

    Figure  2.  Line width measurement principle based on silicon lattice constant in TEM; 22 nm and 45 nm line width standards traceable to the silicon lattice constant

    图  3  扫描隧道显微镜(STM)工作原理示意图

    Figure  3.  Schematic diagram of the working principle of scanning tunneling microscope (STM)

    图  4  原子力显微镜(AFM)工作原理示意图

    Figure  4.  Schematic diagram of the working principle of atomic force microscope (AFM)

    图  5  qPlus原子力显微镜(qPlus-AFM)工作原理示意图

    Figure  5.  Schematic diagram of the working principle of qPlus atomic force microscope (qPlus-AFM)

  • [1] BIPM, CCL. Report of 17th meeting (14-15 June 2018) to the CIPM [EB/CD]. [2019-08-06]. www. bipm. org/utils/common/pdf/CC/CCL/CCL17. pdf.
    [2] TIESINGA E, MOHR P J, NEWELL D B, et al. CODATA recommended values of the fundamental physical constants: 2018[J]. Journal of physical and chemical reference data, 2021, 50: 033105. doi: 10.1063/5.0064853
    [3] BARTL G, ELSTER C, MARTIN J, et al. Thermal expansion and compressibility of single-crystal silicon between 285 K and 320 K[J]. Measurement Science and Technology, 2020, 31(6): 065013. doi: 10.1088/1361-6501/ab7359
    [4] BECKER P. History and progress in the accurate determination of the Avogadro constant[J]. Rep. Prog. Phys., 2001, 64: 1945-2008. doi: 10.1088/0034-4885/64/12/206
    [5] TANIGUCHI N. Current status in and future trends of ultraprecision machining and ultrafine materials processing[J]. CIRP Annals-Manufacturing Technology, 1983, 32: 573-582. doi: 10.1016/S0007-8506(07)60185-1
    [6] PISANI M, YACOOT A, BALLING P, et al. Comparison of the performance of the next generation of optical interferometers[J]. Metrologia, 2012, 49(4): 455. doi: 10.1088/0026-1394/49/4/455
    [7] LAWALL J R. Fabry-Perot metrology for displacements up to 50 mm[J]. JOSA A, 2005, 22(12): 2786-2798. doi: 10.1364/JOSAA.22.002786
    [8] CELIK M, HAMID R, KUETGENS U, et al. Picometre displacement measurements using a differential Fabry–Perot optical interferometer and an x-ray interferometer[J]. Measurement Science and Technology, 2012, 23(8): 085901. doi: 10.1088/0957-0233/23/8/085901
    [9] YACOOT A, CROSS N. Measurement of picometre non-linearity in an optical grating encoder using x-ray interferometry[J]. Measurement Science and Technology, 2002, 14(1): 148.
    [10] HANKE M, KESSLER E G. Precise lattice parameter comparison of highly perfect silicon crystals[J]. Journal of Physics D: Applied Physics, 2005, 38(10A): A117. doi: 10.1088/0022-3727/38/10A/022
    [11] BECKER P, DORENWENDT K, EBELING G, et al. Absolute measurement of the (220) lattice plane spacing in a silicon crystal[J]. Physical Review Letters, 1981, 46(23): 1540-1543. doi: 10.1103/PhysRevLett.46.1540
    [12] WASEDA A, FUJIMOTO H, ZHANG X W, et al. Homogeneity characterization of lattice spacing of silicon single crystals[J]. 29th Conference on Precision Electromagnetic Measurements (CPEM 2014), 2014: 400-401.
    [13] DAI G, MARKUS H, AND CHRISTIAN K, et al. Reference nano-dimensional metrology by scanning transmission electron microscopy[J]. Measurement Science and Technology, 2013(24): 085001.
    [14] DAI G, KAI H, HARALD B, et al. Comparison of line width calibration using critical dimension atomic force microscopes between PTB and NIST[J]. Measurement Science and Technology, 2017(28): 065010.
    [15] TSAI V, VORBURGER T, DIXSON R, et al. The Study of Silicon Stepped Surfaces as Atomic Force Microscope Calib Standards with a Calibrated AFM at NIST[J]. AIP Conf. Proc. , 1998, 449(1): 839-842.
    [16] DIXSON R, GUTHRIE W, ALLEN R, et al. Process Optimization for Lattice-Selective Wet Etching of Crystalline Silicon Structures[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2016, 15(1): 014503-014503. doi: 10.1117/1.JMM.15.1.014503
    [17] BIPM 2020 Recommendations of CCL/WG-N on: Realization of SI metre using height of monoatomic steps of crystalline silicon surfaces[EB/CD]. [2022-10-31].https://www.bipm.org/utils/common/pdf/CC/CCL/CCL-GD-MeP-3.pdf.
    [18] GARNAES J, NEČAS D, NIELSEN L, et al. Algorithms for using silicon steps for scanning probe microscope evaluation[J]. Metrologia, 2020, 57(6): 064002.
    [19] 李伟, 施玉书, 李琪, 等. 单晶硅晶格间距的测量技术进展及应用[J]. 人工晶体学报, 2021, 50(1): 151-157,178.
    [20] WANG F, SHI Y S, ZHANG S, et al. Automatic measurement of silicon lattice spacings in high-resolution transmission electron microscopy images through 2D discrete Fourier transform and inverse discrete Fourier transform[J]. Nanomanufacturing and Metrology, 2022, 5(2): 119-126. doi: 10.1007/s41871-022-00129-7
    [21] WANG F, SHI Y S, LI W, et al. Characterization of a nano line width reference material based on metrological scanning electron microscope[J]. Chinese Physics B, 2022, 31(5): 050601. doi: 10.1088/1674-1056/ac3225
    [22] SULLAN R M, CHURNSIDE A B, NGUYEN D M, et al. Atomic force microscopy with sub-picoNewton force stability for biological applications[J]. Methods, 2013, 60(2): 131-141. doi: 10.1016/j.ymeth.2013.03.029
    [23] BULL M S, SULLAN R M A, LI H B, et al. Improved Single Molecule Force Spectroscopy Using Micromachined Cantilevers[J]. ACS Nano, 2014, 8(5): 4984-4995. doi: 10.1021/nn5010588
    [24] MELCHER J, STIRLING J, CERVANTES F G, et al. A self-calibrating optomechanical force sensor with femtonewton resolution[J]. Applied Physics Letters, 2014, 105(23): 233109. doi: 10.1063/1.4903801
    [25] GUO J, JIANG, Y. Submolecular insights into interfacial water by hydrogen-sensitive scanning probe microscopy[J]. Accounts of Chemical Research, 2022, 55(12): 1680-1692. doi: 10.1021/acs.accounts.2c00111
    [26] CHENG B, WU D, BIAN K, et al. A qPlus-based scanning probe microscope compatible with optical measurements[J]. Review of Scientific Instruments, 2022, 93(4): 043701. doi: 10.1063/5.0082369
    [27] PENG J, GUO J, HAPALA P, et al. Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy[J]. Nature Communications, 2018, 9(1): 122. doi: 10.1038/s41467-017-02635-5
    [28] MA R, HUAN Q, WU L, et al. Upgrade of a commercial four-probe scanning tunneling microscopy system[J]. Review of Scientific Instruments, 2017, 88(6): 063704. doi: 10.1063/1.4986466
    [29] YAN J H, MA A W, Wang W, et al. A time-shared switching scheme designed for multi-probe scanning tunneling microscope[J]. Review of Scientific Instruments, 2021, 92: 103702.
    [30] HE G, WEI Z, FENG Z, et al. Combinatorial laser molecular beam epitaxy system integrated with specialized low-temperature scanning tunneling microscopy[J]. Review of Scientific Instruments, 2020, 91(1): 013904. doi: 10.1063/1.5119686
    [31] MA R S, LI H, SHI C S, et al. Development of a cryogen-free sub-3 K low-temperature scanning probe microscope by remote liquefaction scheme[J]. Review of Scientific Instruments, 2023, 94: 093701. doi: 10.1063/5.0165089
    [32] LIN T Y, PENG G S. Nanometrology of surface topography: Application to the research in development of a new mass standard[J]. International Journal of Machine Tools and Manufacture, 1998, 38(5-6): 707-713. doi: 10.1016/S0890-6955(97)00121-1
    [33] JALILI N, LAXMINARAYANA K. A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences[J]. Mechatronics, 2004, 14(8): 907-945. doi: 10.1016/j.mechatronics.2004.04.005
    [34] PENG J B, JIANG Y. qPlus sensor based atomic force microscope[J]. PHYSICS, 2023, 52(3): 186-195.
    [35] K Bian, W Zheng, X Chen, et al. A scanning probe microscope compatible with quantum sensing at ambient conditions[J]. Review of Scientific Instruments, 2024, 95(5): 053707. doi: 10.1063/5.0202756
    [36] CHAIKOOL P, AKETAGAWA M, OKUYAMA E. A two-dimensional atom encoder using one lateral-dithered scanning tunneling microscope (STM) tip and a regular crystalline lattice[J]. Measurement Science and Technology, 2009, 20(8): 084006. doi: 10.1088/0957-0233/20/8/084006
    [37] DIXSON R, ORJI N, MISUMi I, et al. Spatial dimensions in atomic force microscopy: instruments, effects, and measurements[J]. Ultramicroscopy, 2018, 194: 199-214.
    [38] 徐毅, 高思田, 李晶. 纳米、亚微米标准样板及SPM量值溯源[J]. 计量学报, 2003, 24(2): 81-84. doi: 10.3321/j.issn:1000-1158.2003.02.001
    [39] 石俊凯, 陈晓梅, 万宇, 等. 基于栅格节距中心峰值检测的扫描探针显微镜校准方法[J]. 计测技术, 2024, 44(1): 73-79.
  • 加载中
图(5)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  33
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-10
  • 录用日期:  2024-04-16
  • 修回日期:  2024-04-18
  • 网络出版日期:  2024-05-30

目录

    /

    返回文章
    返回