留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫米波宽带调频连续波信号的全波形计量校准技术研究

何昭 徐清华 刘雪菲 张亦弛

何昭,徐清华,刘雪菲,等. 毫米波宽带调频连续波信号的全波形计量校准技术研究[J]. 计量科学与技术,2024, 68(8): 64-70 doi: 10.12338/j.issn.2096-9015.2024.0126
引用本文: 何昭,徐清华,刘雪菲,等. 毫米波宽带调频连续波信号的全波形计量校准技术研究[J]. 计量科学与技术,2024, 68(8): 64-70 doi: 10.12338/j.issn.2096-9015.2024.0126
HE Zhao, XU Qinghua, LIU Xuefei, ZHANG Yichi. Full Waveform Calibration Technique for Millimeter-Wave Wideband FMCW Signals[J]. Metrology Science and Technology, 2024, 68(8): 64-70. doi: 10.12338/j.issn.2096-9015.2024.0126
Citation: HE Zhao, XU Qinghua, LIU Xuefei, ZHANG Yichi. Full Waveform Calibration Technique for Millimeter-Wave Wideband FMCW Signals[J]. Metrology Science and Technology, 2024, 68(8): 64-70. doi: 10.12338/j.issn.2096-9015.2024.0126

毫米波宽带调频连续波信号的全波形计量校准技术研究

doi: 10.12338/j.issn.2096-9015.2024.0126
基金项目: 国家重点研发计划项目(2022YFF0604802、2022YFF0604400、2017YFF0206202)。
详细信息
    作者简介:

    何昭(1968-),中国计量科学研究院副研究员,研究方向:时频域全波形计量技术,邮箱:hezhao@nim.ac.cn

    通讯作者:

    张亦弛(1984-),中国计量科学研究院副研究员,研究方向:时频域全波形计量技术,邮箱:zhangyichi@nim.ac.cn

  • 中图分类号: TB973

Full Waveform Calibration Technique for Millimeter-Wave Wideband FMCW Signals

  • 摘要: 为了更好地满足毫米波汽车雷达领域对调频连续波(FMCW)信号测试设备的校准需求,提升针对毫米波宽带复杂模拟调制信号的计量和测试能力,构建了频域全波形计量标准装置和被校FMCW测试设备的混合测量系统,利用二者对自定义毫米波FMCW信号的原位、同步测量,实现对商用仪表的校准和性能验证。在24 GHz和60 GHz典型毫米波雷达频段,充分对比了不同测量方法和设备的性能差异。实验结果表明,频域全波形计量方法优于相关商用仪器,在200 MHz窄带和2 GHz宽带条件下的线性调频偏差测量结果均小一个数量级,具备开展校准和性能验证的技术条件。
  • 图  1  频域全波形计量装置原理框图

    Figure  1.  Block diagram of frequency-domain full waveform metrology setup for FMCW signals

    图  2  功率校准原理框图

    Figure  2.  Block diagram of power calibration

    图  3  相位校准原理框图

    Figure  3.  Block diagram of phase calibration

    图  4  线性调频瞬时频偏示意图

    Figure  4.  Illustration of FMCW instantaneous frequency deviation

    图  5  FMCW上变频

    Figure  5.  Up-conversion of FMCW signals

    图  6  FMCW测量结果的数据处理流程

    Figure  6.  Data processing flow for FMCW measurements

    图  7  24 GHz窄带(200 MHz)测试

    Figure  7.  200 MHz narrow-band test at 24 GHz

    图  8  60 GHz宽带(2 GHz)测试

    Figure  8.  2 GHz wide-band test at 60 GHz

    表  1  FMCW信号测量结果

    Table  1.   Measurement results of FMCW signals

    调制方式 调频速率(MHz/μs) 最大频偏(MHz) 载波频率(GHz) 实测线性调频偏差(MHz)
    频域 时域 VSA
    FMCW 125 ±100 24 0.4 2.2 4.2
    1250 ±1000 60 41.2 321 231
    下载: 导出CSV
  • [1] Jeffrey G. Andrews, Stefano Buzzi, Wan Choi, et al. What Will 5G Be?[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065-1082. doi: 10.1109/JSAC.2014.2328098
    [2] J Cheng, W Chen, F Tao, et al. Industrial IoT in 5G environment towards smart manufacturing[J]. J. Ind. Inf. Integr, 2018, 10: 10-19.
    [3] Zhong M, Yang Y, Yao H, et al. 5G and IoT: Towards a new era of communications and measurements[J]. IEEE Instrumentation and Measurement Magazine, 2019, 22(6): 18-26. doi: 10.1109/MIM.2019.8917899
    [4] Liu Y, Wang C X, Huang J. Recent Developments and Future Challenges in Channel Measurements and Models for 5G and Beyond High-Speed Train Communication Systems[J]. IEEE Communications Magazine, 2019, 57(9): 50-56. doi: 10.1109/MCOM.001.1800987
    [5] Westberg E , Staudinger J , Annes J , et al. 5G Infrastructure RF Solutions: Challenges and Opportunities[J]. IEEE microwave magazine, 2019, 20(12): 51-58.
    [6] Biswa P. S. Sahoo, Ching-Chun Chou, Chung-Wei Weng, et al. Enabling Millimeter-Wave 5G Networks for Massive IoT Applications: A Closer Look at the Issues Impacting Millimeter-Waves in Consumer Devices Under the 5G Framework[J]. IEEE Consumer Electronics Magazine, 2019, 8(1): 49-54. doi: 10.1109/MCE.2018.2868111
    [7] Sana Salous, Vittorio Degli Esposti, Franco Fuschini, et al. Millimeter-Wave Propagation: Characterization and modeling toward fifth-generation systems[J]. IEEE Antennas and Propagation Magazine, 2016, 58(6): 115-127. doi: 10.1109/MAP.2016.2609815
    [8] Jon Martens. Meeting New RF Measurement Challenges: Wide Intermediate-Frequency Millimeter-Wave Modulated Device and Subsystem Characterization and Evolving Measurement Architectures[J]. IEEE Microwave Magazine, 2018, 19(2): 35-48. doi: 10.1109/MMM.2017.2779679
    [9] Chao Yu, Jianxin Jing, Han Shao, et al. Full-Angle Digital Predistortion of 5G Millimeter-Wave Massive MIMO Transmitters[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(7): 2847-2860. doi: 10.1109/TMTT.2019.2918450
    [10] Kate A. Remley, Joshua A. Gordon, David Novotny, et al. Measurement challenges for 5G and beyond: an update from the National Institute of Standards and Technology[J]. IEEE Microwave Magazine, 2017, 18(5): 41-56. doi: 10.1109/MMM.2017.2690882
    [11] Wilson P F , Remley K A , Young W F , et al. A NIST perspective on metrology and EMC challenges for 5G and beyond[J]. Electromagnetic Compatibility Magazine, IEEE, 2018, 7(4): 77-85.
    [12] Camillo Gentile, Peter B. Papazian, Nada Golmie, et al. Millimeter-Wave Channel Measurement and Modeling: A NIST Perspective[J]. IEEE Communications Magazine, 2018, 56(12): 30-37. doi: 10.1109/MCOM.2018.1800222
    [13] Hale P D, Williams D F, Dienstfrey A. Waveform metrology: signal measurements in a modulated world[J]. Metrologia, 2018, 55(5): S135-S151. doi: 10.1088/1681-7575/aad1cd
    [14] Remley K A, Williams D F, Hale P D, et al. Millimeter-wave modulated-signal and error-vector-magnitude measurement with uncertainty[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(5): 1710-1720. doi: 10.1109/TMTT.2015.2416180
    [15] P. Manurkar, R. Horansky, B. Jamroz, et al. Precision Millimeter-Wave-Modulated Wideband Source at 92.4 GHz as a Step Toward an Over-the-Air Reference[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(7): 2644-2654.
    [16] A. S. Ramadurgakar, K. A. Remley, D. F. Williams, et al. A Measurement-Referenced Error Vector Magnitude for Counterfeit Cellular Device Detection[C]. 101st ARFTG Microwave Measurement Conference (ARFTG), 2023.
    [17] P. Manurkar, D. G. Kuester, J. M. Kast, et al. Dynamic Range by Design in OTA EVM Measurements[C]. 101st ARFTG Microwave Measurement Conference (ARFTG), 2023.
    [18] P. Manurkar, J. M. Kast, D. F. Williams, et al. Recommended Practices for Calibrated Millimeter-Wave Modulated-Signal Measurements[C]. 100th ARFTG Microwave Measurement Conference (ARFTG), 2023.
    [19] P. Manurkar, C. P. Silva, J. Kast, et al. Reference Measurements of Error Vector Magnitude[C]. 2022 IEEE/MTT-S International Microwave Symposium, 2022.
    [20] R. D. Horansky, D. C. Ribeiro, J. A. Jargon, et al. Dominant Uncertainty in Traceable Millimeter-Wave Modulated Signal Source for OTA Calibration[C]. International Workshop on Antenna Technology (iWAT), 2020.
    [21] IEEE. IEEE Recommended Practice for Estimating the Uncertainty in Error Vector Magnitude of Measured Digitally Modulated Signals for Wire-less Communications: IEEE Std 1765–2022[S]. IEEE , 2022.
    [22] Yichi Zhang, Fushun Nian, Guoping Yuan, et al. Precisely Synchronized NVNA Setup for Digitally Modulated Signal Generation and Measurement at 5G-Oriented Millimeter-Wave Test Bands[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 833-845. doi: 10.1109/TMTT.2020.3028383
    [23] Yichi Zhang, Zhao He, Meining Nie, et al. NVNA Test Bench for Characterizing In-Band Full-Duplex Performance of Millimeter-Wave Antennas[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7231-7242. doi: 10.1109/TAP.2021.3090506
    [24] Yichi Zhang, Fushun Nian, Guoping Yuan, et al. Verification of Real-Time Oscilloscope for Millimeter-Wave Modulated-Signal Measurements Using an NVNA Test Bench[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(10): 4459-4470. doi: 10.1109/TMTT.2023.3264538
    [25] Yichi Zhang, Dandan Wu, Zhao He, et al. Characterization of Millimeter-Wave Wideband FMCW Signals Based on a Precisely Synchronized NVNA for Automotive Radar Applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(1): 250-262. doi: 10.1109/TMTT.2022.3210236
    [26] Y. Zhang, D. Wu, H. Gao, et al. Frequency-domain Characterization of Millimeter-wave FMCW Signal based on a Precisely Synchronized NVNA Measurement Setup[C]. 2022 IEEE/MTT-S International Microwave Symposium, 2022.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  28
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 录用日期:  2024-04-22
  • 修回日期:  2024-06-04
  • 网络出版日期:  2024-06-18

目录

    /

    返回文章
    返回