留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三碘代-L-甲状腺原氨酸(T3)标准物质中结构相关杂质的分析

肖鹏 宋丹 李红梅

肖鹏,宋丹,李红梅. 三碘代-L-甲状腺原氨酸(T3)标准物质中结构相关杂质的分析[J]. 计量科学与技术,待出版. doi: 10.12338/j.issn.2096-9015.2024.0134
引用本文: 肖鹏,宋丹,李红梅. 三碘代-L-甲状腺原氨酸(T3)标准物质中结构相关杂质的分析[J]. 计量科学与技术,待出版. doi: 10.12338/j.issn.2096-9015.2024.0134
XIAO Peng, SONG Dan, LI Hongmei. Analysis of the Structural-related Impurities Involved in 3,3',5-Triiodo-L-thyronine (T3) Purity Reference Material[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0134
Citation: XIAO Peng, SONG Dan, LI Hongmei. Analysis of the Structural-related Impurities Involved in 3,3',5-Triiodo-L-thyronine (T3) Purity Reference Material[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0134

三碘代-L-甲状腺原氨酸(T3)标准物质中结构相关杂质的分析

doi: 10.12338/j.issn.2096-9015.2024.0134
基金项目: 国家重点研发计划(2022YFF0710303);国家科技基础条件平台(APT2302-1,APT2302-6)。
详细信息
    作者简介:

    肖鹏(1982-),中国计量科学研究院副研究员,研究方向:临床化学计量,邮箱:xiaop@nim.ac.cn

Analysis of the Structural-related Impurities Involved in 3,3',5-Triiodo-L-thyronine (T3) Purity Reference Material

  • 摘要: 研制三碘代-L-甲状腺原氨酸(T3)纯度标准物质,可为临床测量结果提供溯源源头,为甲状腺疾病的精准诊断提供可靠依据。在质量平衡法定值过程中,对候选物结构相关杂质进行化学结构鉴定与定量,是降低主成分定值结果不确定度的有效方式。以核磁共振、高分辨质谱为化学分析工具,首先确认了T3标准物质主成分的结构;随后基于高效液相色谱、高分辨质谱、离子淌度等分析技术开发建立了结构相关杂质的分析方法,对T3纯度标准物质中的有机杂质进行分离、分析、鉴定。结果表明,NIM-RM3239标准物质中相对含量>0.1%的结构类似杂质共3种,分别为二碘代-L-甲状腺原氨酸、氯代三碘代-L-甲状腺原氨酸、L-甲状腺素,对映异构体拆分结果表明NIM-RM3239中不含主成分的对映异构体。研究结果可作为质量平衡法定值依据,用于研制纯度型T3国家一级有证标准物质。
  • 图  1  T3 标准物质在氘代 DMSO 中的核磁共振碳谱与氢谱

    Figure  1.  Carbon and proton nuclear magnetic resonance spectra of T3 reference material in deuterated DMSO

    图  2  高效液相色谱串联高分辨质谱分析 T3 标准物质(A) 紫外吸收色谱图;(B)主成分质谱图

    Figure  2.  Impurities analysis of T3 reference material using UPLC coupled high-resolution MS. (A) UV spectrometry; (B)Mass spectra of main peak

    图  3  主成分及结构类似杂质二级质谱图(A)杂质 3;(B)主成分;(C)杂质 2;(D)杂质 1

    Figure  3.  The tandem product ions distribution for main compound and the structural-related impurities (A) Impurity 3; (B)Main compound; (C) Impurity 2; (D) Impurity 1

    图  4  杂质1鉴定结果验证:不同脱碘位置的二碘甲腺原氨酸色谱与质谱对比

    Figure  4.  Validation of impurity 1 identification: The LC chromatography and MS spectrum comparison between impurity 1 and three kinds of diiodothyroxines

    图  5  杂质3鉴定结果验证: 杂质3与L-甲状腺素色谱与质谱对比

    Figure  5.  Validation of impurity 3 identification: the LC chromatography and MS spectrum comparison between impurity 3 and L-Thyronine.

    图  6  L-/D-T3的离子淌度质谱图(A,B)波速300 m/s、波高40v下淌度谱图;(C,D)波速900 m/s、波高40v下淌度谱图;(E,F)波速300 m/s、波高40v下淌度谱图

    Figure  6.  Ion mobility spectrometry of L-/D-T3 solution under (A,B)wave velocity 300 m/s, wave height 40v; (C,D)wave velocity 900 m/s, wave height 40v, and (E,F)wave velocity 1200 m/s, wave height 40v, respectively

    图  7  基于环果聚糖色谱柱拆分L型、D型T3(A)L-T3基峰色谱图;(B)D-T3基峰色谱图;(C)L-/D-型T3混合样本

    Figure  7.  Separation of L-T3 and D-T3 using derivatized cyclofructan liquid chromatography. (A) Base peak ion chromatogram of L-T3;(B) Base peak ion chromatogram of D-T3; (C) Base peak ion chromatogram of L-/D-T3 mixture

    表  1  T3纯度标准物质中主要结构近似杂质分布

    Table  1.   The main impurities involved in T3 reference material

    代号 质荷比 分子式
    杂质1 525.89 C15H13I2NO4
    杂质2 559.86 C15H11ClI2NO4
    杂质3 777.69 C15H11I4NO4
    下载: 导出CSV
  • [1] STERLING K, BRENNER M A, SAKURADA T. Rapid effect of triiodothyronine on the mitochondrial pathway in rat liver in vivo[J]. Science, 1980, 210(4467): 340-2. doi: 10.1126/science.7423197
    [2] KAHALY G J, DILLMANN W H. Thyroid hormone action in the heart[J]. Endocr Rev, 2005, 26(5): 704-28. doi: 10.1210/er.2003-0033
    [3] DAVIS P J, GOGLIA F, LEONARD J L. Nongenomic actions of thyroid hormone[J]. Nat Rev Endocrinol, 2016, 12(2): 111-21. doi: 10.1038/nrendo.2015.205
    [4] International Organization for Standardization. ISO 17511: 2020 In vitro diagnostic medical devices — Requirements for establishing metrological traceability of values assigned to calibrators, trueness control materials and human samples [S]. 2nd Edition. Switzerland: ISO, 2020.
    [5] GUZMAN D A, SOLARI G S. Traceability and harmonization in clinical laboratory[J]. Rev Med Chil, 2009, 137(5): 713-5.
    [6] JONES G R D, DELATOUR V, BADRICK T. Metrological traceability and clinical traceability of laboratory results - the role of commutability in External Quality Assurance[J]. Clin Chem Lab Med, 2022, 60(5): 669-74. doi: 10.1515/cclm-2022-0038
    [7] 丁敏. 临床检验标准物质现状及研制方法 [J]. 上海计量测试. 2021, 48(6): 2-5.
    [8] 杨振华. 建设我国检验医学参考体系任重道远[J]. 临床检验杂志. 2012, 30(10): 734-6.
    [9] 焦慧, 李红梅, 阚莹, 等. 化学计量国际体系及发展趋势[J]. 计量科学与技术. 2021, 65(6): 65-70.
    [10] WESTWOOD S, CHOTEAU T, DAIREAUX A, et al. Mass balance method for the SI value assignment of the purity of organic compounds[J]. Anal Chem, 2013, 85(6): 3118-26. doi: 10.1021/ac303329k
    [11] 涂梦灵, 杨冰鑫, 朱云霄, 等. 新烟碱类农药有证标准物质研究进展 [J]. 计量科学与技术. 2023, 67(3): 65-71.
    [12] XIAO P, CHEN J, WU P, et al. Development of an SI-traceable N-terminal pro-B-type natriuretic peptide certified reference material using structure-based impurity-corrected isotope dilution mass spectrometry approaches[J]. Analytical and Bioanalytical Chemistry, 2024, 416(14): 3447-58. doi: 10.1007/s00216-024-05295-9
    [13] JOSEPHS R D, LI M, SONG D, et al. Key comparison study on peptide purity—synthetic human C-peptide[J]. Metrologia, 2017, 54(1A): 08007. doi: 10.1088/0026-1394/54/1A/08007
    [14] JOSEPHS R D, LI M, DAIREAUX A, et al. Key comparison study on peptide purity - synthetic oxytocin[J]. Metrologia, 2020, 57(1A): 08014. doi: 10.1088/0026-1394/57/1A/08014
    [15] 黄挺, 张伟, 全灿, 等. 定量核磁共振新方法在纯度定值的应用[J]. 计量技术. 2018(9): 8-9.
    [16] 黄挺, 王静羽, 万康妮. 去除杂质干扰的定量核磁共振法进展综述[J]. 计量科学与技术. 2022, 66(6): 26-30.
    [17] JACQUEMIN C, MICHEL R, NUNEZ J, et al. Catalytic tritiation of iodized phenols. Preparation of tritiated estradiol, tyrosine and thyronine[J]. C R Hebd Seances Acad Sci, 1959, 249: 1904-6.
    [18] LISSITZKY S, ROQUES M. Oxidation of tyrosine, thyronine, and their iodo derivatives. I. Actions of the ascorbic acid-ferrous ion-oxygen system[J]. Bull Soc Chim Biol (Paris), 1957, 39(5-6): 521-37.
    [19] LISSITZKY S, BOUCHILLOUX S. Oxidation of tyrosine, thyronine & their iodinated derivatives. II. Effect of polyphenol oxidase on halogenated tyrosines & iodothyronines[J]. Bull Soc Chim Biol (Paris), 1957, 39(11): 1215-25.
    [20] 阚莹, 卢晓华, 孟凡敏, 等. JJF1343-2012《标准物质定值的通用原则及统计学原理》的使用[J]. 中国计量. 2012(11): 122-4.
    [21] PIEHL S, HEBERER T, BALIZS G, et al. Development of a validated liquid chromatography/tandem mass spectrometry method for the distinction of thyronine and thyronamine constitutional isomers and for the identification of new deiodinase substrates[J]. Rapid Commun Mass Spectrom, 2008, 22(20): 3286-96. doi: 10.1002/rcm.3732
    [22] RUGGENTHALER M, GRASS J, SCHUH W, et al. Impurity profiling of liothyronine sodium by means of reversed phase HPLC, high resolution mass spectrometry, on-line H/D exchange and UV/Vis absorption[J]. J Pharm Biomed Anal, 2017, 143: 147-58. doi: 10.1016/j.jpba.2017.05.039
    [23] MAIER N M, FRANCO P, LINDNER W. Separation of enantiomers: needs, challenges, perspectives[J]. Journal of Chromatography A, 2001, 906(1): 3-33.
    [24] SHEN J, OKAMOTO Y. Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers[J]. Chemical Reviews, 2016, 116(3): 1094-138. doi: 10.1021/acs.chemrev.5b00317
    [25] SANTOS L F, IGLESIAS A H, PILAU E J, et al. Traveling-wave ion mobility mass spectrometry analysis of isomeric modified peptides arising from chemical cross-linking[J]. J Am Soc Mass Spectrom, 2010, 21(12): 2062-9. doi: 10.1016/j.jasms.2010.08.017
    [26] EYERS C E, VONDERACH M, FERRIES S, et al. Understanding protein-drug interactions using ion mobility-mass spectrometry[J]. Curr Opin Chem Biol, 2018, 42: 167-76. doi: 10.1016/j.cbpa.2017.12.013
    [27] LALLI P M, IGLESIAS B A, TOMA H E, et al. Protomers: formation, separation and characterization via travelling wave ion mobility mass spectrometry[J]. J Mass Spectrom, 2012, 47(6): 712-9. doi: 10.1002/jms.2999
    [28] PHILLIPS S T, DODDS J N, ELLIS B M, et al. Chiral separation of diastereomers of the cyclic nonapeptides vasopressin and desmopressin by uniform field ion mobility mass spectrometry[J]. Chem Commun (Camb), 2018, 54(68): 9398-401. doi: 10.1039/C8CC03790F
    [29] XIAO P, LI H-M, LI M, et al. Structural characterization and thermally induced isomerization investigation of cis- and trans-vitamin K1 using ion mobility mass spectrometry[J]. Analytical Methods, 2015, 7(19): 8432-8. doi: 10.1039/C5AY01495F
    [30] CHANKVETADZE B. Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers[J]. Journal of Chromatography A, 2012, 1269: 26-51. doi: 10.1016/j.chroma.2012.10.033
    [31] 李依璠, 刘龙婵, 李林楠, 等. 手性分离方法及在中药手性成分研究中的应用[J]. 药学学报. 2023, 58(6): 1566-76.
    [32] LEE J, ADHIKARI S, LEE W, et al. Development of Ultra High-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for Enantiomer Resolution of Thyroxine on a Chiral Crown Ether Derived Chiral Stationary Phase[J]. Chromatographia, 2023, 86(1): 13-20. doi: 10.1007/s10337-022-04219-y
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  31
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-19
  • 录用日期:  2024-06-13
  • 修回日期:  2024-06-13
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回