留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于里德堡原子孔径的电场测量与微波传感研究

赵丹华 陈加锐 鲍鲁威 朱嘉慧

赵丹华,陈加锐,鲍鲁威,等. 基于里德堡原子孔径的电场测量与微波传感研究[J]. 计量科学与技术,2024, 68(8): 18-24, 70 doi: 10.12338/j.issn.2096-9015.2024.0148
引用本文: 赵丹华,陈加锐,鲍鲁威,等. 基于里德堡原子孔径的电场测量与微波传感研究[J]. 计量科学与技术,2024, 68(8): 18-24, 70 doi: 10.12338/j.issn.2096-9015.2024.0148
ZHAO Danhua, CHEN Jiarui, BAO Luwei, ZHU Jiahui. A Review of Electric Field Measurement and Microwave Sensing Based on Rydberg Atomic Apertures[J]. Metrology Science and Technology, 2024, 68(8): 18-24, 70. doi: 10.12338/j.issn.2096-9015.2024.0148
Citation: ZHAO Danhua, CHEN Jiarui, BAO Luwei, ZHU Jiahui. A Review of Electric Field Measurement and Microwave Sensing Based on Rydberg Atomic Apertures[J]. Metrology Science and Technology, 2024, 68(8): 18-24, 70. doi: 10.12338/j.issn.2096-9015.2024.0148

基于里德堡原子孔径的电场测量与微波传感研究

doi: 10.12338/j.issn.2096-9015.2024.0148
基金项目: 中国电科三十六所发展基金(F23003)。
详细信息
    作者简介:

    赵丹华(1986-),中国电科三十六所高级工程师,研究方向:计量技术,邮箱:zhaodh36@163.com

    通讯作者:

    陈加锐(1992-),中国电科三十六所高级工程师,研究方向:新体制微波接收机,邮箱:chenjiarui_nju@163.com

  • 中图分类号: TB973

A Review of Electric Field Measurement and Microwave Sensing Based on Rydberg Atomic Apertures

  • 摘要: 近年来,里德堡原子在微波测量领域的应用逐渐崭露头角,成为了量子精密测量领域的研究热点。相较于传统微波传感技术,里德堡原子体系展现出了更高的灵敏度、更强的抗干扰能力以及独特的量子可溯源性。这些优势使得里德堡原子在微波测量中具有巨大的潜力。尽管里德堡原子体系具有诸多优势,但其复杂的能级结构和与电磁波的多样相互作用给工程应用带来了挑战。目前,基于里德堡原子的“原子孔径”传感技术在传统微波传感领域的应用仍处于初级阶段,有着巨大的提升空间。为了充分发挥里德堡原子在微波测量中的优势,并解决其在实际应用中的局限性,在总结前期研究成果的基础上,探讨了里德堡原子体系在当前电磁波收发体制中的应用前景。随着技术的不断进步,里德堡原子有望在更广泛的频段内实现精确测量,为无线通信、雷达探测等领域提供有力支持。
  • 图  1  传统计量传递与量子计量传递比较

    Figure  1.  Comparison between conventional metrology transfer and quantum metrology transfer

    图  2  μTEM Cell校准原理图

    Figure  2.  Schematic of μTEM cell calibration

    图  3  微波暗室法校准

    Figure  3.  Microwave anechoic chamber calibration method

  • [1] 项国勇, 郭光灿. Quantum metrology[J]. 中国物理B(英文版), 2013, 1: 91-100.
    [2] 胡一鸣. LIGO发现引力波: 一个新时代的起点[J]. 自然杂志, 2016, 38(2): 5-12.
    [3] 何玉钧, 李永倩, 杨志. 全光纤Mach - Zehnder干涉仪及其在光纤自发布里渊散射测量中的应用[J]. 光子学报, 2002, 31(7): 83-87.
    [4] DEGEN C L, REINHARD F, CAPPELLARO P. Quantum sensing[J]. Reviews of Modern Physics, 2017, 89(3): 1.
    [5] ADAMS C S, PRITCHARD J D, SHAFFER J P. Rydberg atom quantum technologies[J]. Journal of Physics B, Atomic Molecular and Optical Physics, 2019, 53(1): 012002.
    [6] ANDERSON D A, GONCALVES L F, LEGAIE R, et al. Towards Rydberg atom synthetic apertures: Wide-area high-resolution RF amplitude and phase imaging with Rydberg probes[C]. 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), 2023.
    [7] MEYER D H, CASTILLO Z A, COX K C, et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53(3): 034001. doi: 10.1088/1361-6455/ab6051
    [8] ZHAO J, ZHU X, ZHANG L, et al. High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency[J]. Optics Express, 2009, 17(18): 15821-15826. doi: 10.1364/OE.17.015821
    [9] HARRIS S E. Electromagnetically induced transparency[J]. Physics today, 1997, 50(7): 36-42. doi: 10.1063/1.881806
    [10] DELONE N B, KRAINOV V P. AC Stark shift of atomic energy levels[J]. Physics-Uspekhi, 1999, 42(7): 669. doi: 10.1070/PU1999v042n07ABEH000557
    [11] JING M, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915. doi: 10.1038/s41567-020-0918-5
    [12] GALLAGHER T F. Rydberg atoms[J]. Reports on Progress in Physics, 1988, 51(2): 143. doi: 10.1088/0034-4885/51/2/001
    [13] MOHAPATRA A K, JACKSON T R, ADAMS C S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency[J]. Physical review letters, 2007, 98(11): 113003. doi: 10.1103/PhysRevLett.98.113003
    [14] WEATHERILL K J, PRITCHARD J D, ABEL R P, et al. Electromagnetically induced transparency of an interacting cold Rydberg ensemble[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41(20): 201002. doi: 10.1088/0953-4075/41/20/201002
    [15] HOLLOWAY C L, GORDON J A, JEFFERTS S, et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6169-6182. doi: 10.1109/TAP.2014.2360208
    [16] ANDERSON D A, MILLER S A, RAITHEL G, et al. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell[J]. Physical Review Applied, 2016, 5(3): 034003. doi: 10.1103/PhysRevApplied.5.034003
    [17] HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 717-728. doi: 10.1109/TEMC.2016.2644616
    [18] THAICHAROEN N, MOORE K R, ANDERSON D A, et al. Electromagnetically induced transparency, absorption, and microwave-field sensing in a Rb vapor cell with a three-color all-infrared laser system[J]. Physical Review A, 2019, 100(6): 063427. doi: 10.1103/PhysRevA.100.063427
    [19] SEDLACEK J A, SCHWETTMANN A, KÜBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature physics, 2012, 8(11): 819-824. doi: 10.1038/nphys2423
    [20] SHENG J, CHAO Y, KUMAR S, et al. Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity[J]. Physical Review A, 2017, 96(3): 033813. doi: 10.1103/PhysRevA.96.033813
    [21] PRAJAPATI N, ROBINSON A K, BERWEGER S, et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 2021, 119(21): 1-6.
    [22] SIMONS M T, ARTUSIO-GLIMPSE A B, HOLLOWAY C L, et al. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning[J]. Physical Review A, 2021, 104(3): 032824. doi: 10.1103/PhysRevA.104.032824
    [23] DING D S, LIU Z K, SHI B S, et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 2022, 18(12): 1447-1452. doi: 10.1038/s41567-022-01777-8
    [24] 陈竹年. 量子计量学的形成和发展[J]. 自然杂志, 1997, 20(2): 71-73.
    [25] GRAWFORD M L. Generation of Standard EM Fields Using TEM Transmission Cells[J]. Electromagnetic Compatibility IEEE Transactions on, 1974, EMC-16(4): 189-195. doi: 10.1109/TEMC.1974.303364
    [26] 刘潇, 赵兴, 洪力, 等. 微波暗室静区性能评测及不确定度分析[J]. 计量科学与技术, 2022, 66(4): 89-94.
    [27] 石照民, 张江涛, 潘仙林, 等. 超低频电压量值溯源关键技术研究[J]. 计量科学与技术, 2021, 65(5): 30-35. doi: 10.12338/j.issn.2096-9015.2020.9011
    [28] 李耿, 陈璀, 安宁, 等. 电磁环境测试系统灵敏度计算及影响因素分析[J]. 计量与测试技术, 2022, 49(8): 40-44.
    [29] 国家市场监督管理总局. 电场探头校准规范: JJF1886-2020 [S]. 北京: 中国标准出版社, 2020.
    [30] 国家国防科技工业局. 电磁场传感器和探头: JJG(军工) 24-2018 [S]. 北京: 中国标准出版社, 2018.
    [31] HOLLOWAY C L, SIMONS M T, KAUTZ M D, et al. A quantum-based power standard: using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides[J]. Applied Physiscs Letters, 2018, 113(9): 1.
    [32] 李琪, 施玉书, 李伟, 等. 微纳米光学测量的严格耦合波分析方法[J]. 计量科学与技术, 2020(12): 3-6,11. doi: 10.3969/j.issn.2096-9015.2020.12.01
    [33] SHAFFER J P, KÜBLER H. A read-out enhancement for microwave electric field sensing with Rydberg atoms[C]. Quantum Technologies 2018, 2018.
    [34] VOGT T, VITEAU M, CHOTIA A, et al. Electric-field induced dipole blockade with Rydberg atoms[J]. Physical Review Letters, 2007, 99(7): 073002. doi: 10.1103/PhysRevLett.99.073002
    [35] BOHLOULI-ZANJANI P, PETRUS J A, MARTIN J D D. Enhancement of Rydberg atom interactions using ac Stark shifts[J]. Physical review letters, 2007, 98(20): 203005. doi: 10.1103/PhysRevLett.98.203005
    [36] MEYER D H, KUNZ P D, SOLMEYER N. Nonlinear polarization spectroscopy of a Rydberg state for laser stabilization[J]. Applied Optics, 2017, 56(3): B92-B96. doi: 10.1364/AO.56.000B92
  • 加载中
图(3)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  65
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-06
  • 录用日期:  2024-05-13
  • 修回日期:  2024-05-18
  • 网络出版日期:  2024-06-25

目录

    /

    返回文章
    返回