Evaluation of Uncertainty in Resistance Measurement for Verificating Meter for pH Meters Based on MCM
-
摘要: pH计检定仪作为检定校准pH(酸度)计、离子计、自动电位滴定仪等仪器电计部分的计量标准装置,在电化学计量领域中起到重要作用。随着JJG 919-2023《pH计检定仪检定规程》的发布,其规程一直未提供pH计检定仪高阻器电阻测量结果的不确定度的有关内容。通过运用国际通用的不确定度评定方法(GUM法)与蒙特卡洛方法(MCM法)对pH计检定仪高阻器的阻值测量结果进行不确定度评定。首先,采用GUM法对高阻器阻值的测量不确定度进行评定,通过采用MCM alchimia软件来对MCM法对其测量结果的不确定度评定。为了验证MCM alchimia软件对MCM法的有效性,使用运算和可视化更为完善的MATLAB软件对其MCM法以及自适应MCM法计算结果的比较,结果表明MCM alchimia软件计算得到的不确定度结果与MATLAB编程所得到的不确定度结果是一致的。另外,通过采用JJF1059.2-2012中用MCM法验证GUM法结果的方法,对GUM法评定pH计检定仪高阻器阻值测量结果不确定度的适用性,结果未能通过验证。因此,应用MCM法并通过MCM alchimia软件在pH计检定仪高阻器电阻测量不确定度评定方法的标准化提供参考。Abstract: The Verificating meter for pH meters serves as a metrological standard device for the verification and calibration of the electrical meter parts of instruments such as pH meters,ion meters,and automatic potentiometric titrators. It plays an important role in the field of electrochemical metrology.With the release of JJG 919-2023 "Verification Regulation of Verificating Meters for pH Meters",there has been no provision of content regarding the uncertainty of resistance measurement results of high-resistance devices in Verificating meters for pH meters.This article evaluates the uncertainty of resistance measurement results of high-resistance devices in Verificating meters for pH meters by applying the internationally recognized uncertainty evaluation methods:the Guide to the Expression of Uncertainty in Measurement(GUM) method and the Monte Carlo Method(MCM).Initially,we use the GUM method to assess the measurement uncertainty of high-resistance values,adopting MCM alchimia software to evaluate the uncertainty of its measurement results through the MCM method.To verify the effectiveness of MCM alchimia software for the MCM method,a comparison of the calculation results of the MCM method and the adaptive MCM method using MATLAB software with more comprehensive computation and visualization capabilities is conducted.The results indicate that the uncertainty outcomes calculated by MCM alchimia software are consistent with those obtained through MATLAB programming.Additionally, by employing the MCM method to validate the GUM method results as described in JJF1059.2-2012,the applicability of the GUM method for evaluating the uncertainty of resistance measurement results of high-resistance devices in Verificating meters for pH meters was assessed and failed to pass the validation.Therefore, applying the MCM method and utilizing MCM alchimia software provides a reference for the standardization of uncertainty assessment methods in resistance measurements of high-resistance devices in Verificating meters for pH meters.
-
Key words:
- metrology /
- verificating meter for pH meters /
- Monte Carlo method /
- GUM /
- high-value resistor /
- MCM Alchimia /
- measurement uncertainty
-
表 1 各分量标准不确定度汇总表
Table 1. Summary table of standard uncertainty of each component
不确定度分量 不确定度来源 u(xi)的值 灵敏系数ci ui(GΩ) $ u({\bar E_1}) $ 1000 mV测量值0.00225 mV0.0010 GΩ·mV2.3×10−6 $ u({\bar E_1}) $ 采样电压测量值 0.24 mV 0.034 GΩ·mV 0.0082 $ u({R_0}) $ 取样电阻不确定度 2.3×10−5 GΩ 32 0.0007 表 2 测量模型的输入量及其服从的PDF
Table 2. Input quantities of the measurement model and their corresponding probability density functions (PDF)
输入量 分布 参数 期望μ 标准偏差σ 期望(a+b)/2 半宽度(b-a)/2 E01 N(μ,σ2) 1000.001 mV0.00027 mV— — E02 R(a,b) — — 0 mV 0.0039 mVE11 N(μ,σ2) 29.885 mV 0.169 mV — — E12 R(a,b) — — 0 mV 0.000249 mVE13 N(μ,σ2) 0 mV 0.005 mV — — R0 N(μ,σ2) 0.029993 GΩ0.000022 GΩ— — 表 3 MCM结果及扩展不确定度结果
Table 3. MCM results and expanded uncertainty results
/GΩ 高阻器阻值 测量结果 标准不确定度 扩展不确定度(k=2) R 0.974 0.006 0.011 表 4 几种方法不确定度结果的比较
Table 4. Comparison of uncertainty results from several methods
/GΩ 不确定度评定方法
(运用软件)测量值 标准不确定度 95%包含区间 GUM 0.974 0.006 [0.962,0.986] GUM
(MCM Alchimia)0.974 0.006 [0.962,0.986] MCM
(MCM Alchimia)0.974 0.006 [0.962,0.985] MCM
(MATLAB)0.974 0.006 [0.962,0.985] 自适应MCM
(MATLAB)0.974 0.006 [0.962,0.985] 表 5 GUM法的验证汇总表 /GΩ
Table 5. Summary table of validation for the GUM method
容差δ y Up dlow dhigh 是否通过验证 0.005 0.97 0.02 0.012 0.005 否 0.0005 0.974 0.012 0.00049 0.0012 否 -
[1] 国家市场监督管理总局. pH计检定仪检定规程JJG 919-2023[S]. 北京: 中国质检出版社, 2023. [2] 国家市场监督管理总局. JJG 119-2018, 实验室pH(酸度)计检定规程[S]. 北京: 中国质检出版社, 2019. [3] 国家质量监督检验检疫总局. JJF 1547-2015, 在线pH计校准规范[S]. 北京: 中国质检出版社, 2016. [4] 国家市场监督管理总局. JJG 757-2018, 实验室离子计检定规程[S]. 北京: 中国质检出版社, 2019. [5] 国家质量监督检验检疫总局. JJG 814-2015, 自动电位滴定仪检定规程[S]. 北京: 中国质检出版社, 2016. [6] 付文慧, 葛艳梅, 任庆弟, 等. pH(酸度)计测量不确定度的评定[J]. 当代化工, 2013, 42(10): 1481-1482. doi: 10.3969/j.issn.1671-0460.2013.10.049 [7] 贾会, 张书伟, 杨宇. pH计检定仪示值误差的测量不确定度评定及分析[J]. 工业计量, 2022, 32(3): 54-55. [8] 付迪, 刘广荔, 李君. pH计电计输入电流测量结果的不确定度评定[J]. 中国标准化, 2019(4): 162-163. doi: 10.3969/j.issn.1002-5944.2019.04.071 [9] 贾会, 许建军, 吴佳益, 等. pH计检定仪期间核查方法[J]. 化学分析计量, 2020, 29(1): 108-111. doi: 10.3969/j.issn.1008-6145.2020.01.026 [10] 和娟. 智能化酸度计检定装置研究[D]. 杭州: 中国计量大学, 2021. [11] 国家质量监督检验检疫总局. 测量不确定度评定与表示: JJF1059.1-2012[S]. 北京: 中国质检出版社, 2012. [12] 国家质量监督检验检疫总局. 用蒙特卡洛法评定测量不确定度: JJF1059.2-2012[S]. 北京: 中国质检出版社, 2013. [13] 靳浩元, 刘军. 测量不确定度的评定方法及应用研究[J]. 计量科学与技术, 2021, 65(5): 124-131. doi: 10.12338/j.issn.2096-9015.2020.9002 [14] 王海斌, 张建宏, 朱天一. MCM法和GUM法评定氨气检测仪示值误差不确定度的对比[J]. 化学分析计量, 2021, 30(3): 85-89. [15] 修宏宇, 崔伟群, 刘俊杰, 等. 采用蒙特卡洛法评定PM2.5切割粒径的不确定度[J]. 计量技术, 2017(11): 3-7. [16] 李菁, 康帅, 王冰, 等. 蒙特卡洛法和不确定度传播率法在药品内标法含量测定不确定度评定中的比较研究[J]. 中国药学杂志, 2022, 57(6): 472-477. [17] 孟舒婷, 周卫平, 戴绘芬, 等. 蒙特卡洛法对校准曲线法测定总胆红素浓度的不确定度评定[J]. 检验医学, 2022, 37(7): 674-679. doi: 10.3969/j.issn.1673-8640.2022.07.015 [18] 窦明理, 陈华凤, 武首熏, 等. 基于蒙特卡洛法测定猪肝中四种异噁唑啉药物的不确定度评定[J]. 计量与测试技术, 2023, 50(5): 107-110,113. [19] 黄河清, 王高俊, 朱盼盼, 等. 自适应蒙特卡洛法测量复合肥料中缩二脲的不确定度[J]. 化学分析计量, 2023, 32(1): 83-87. doi: 10.3969/j.issn.1008-6145.2023.01.018 [20] Silva JH, Cortez PC, Jagatheesaperumal SK, et al. ECG measurement uncertainty based on Monte Carlo approach: an effective analysis for a successful cardiac health monitoring system[J]. Bioengineering, 2023, 10(1): 115. doi: 10.3390/bioengineering10010115 [21] 季一顺, 胡斌, 张爱英, 等. 自适应MCM法和GUM法评价直接进样测汞法测定稻谷中总汞的不确定度比较研究[J/OL]. 中国粮油学报, 1-15[2024-06-12].https://doi.org/10.20048/j.cnki.issn.1003-0174.000562. [22] 刘存成, 胡畅. 基于MATLAB用蒙特卡洛法评定测量不确定度[M]. 北京: 中国质检出版社, 2014. [23] 练洪铭. 基于Python的MCM法评定加油机示值误差测量不确定度[J]. 石油工业技术监督, 2023, 39(1): 42-46. [24] 王舵. 基于Python软件的蒙特卡洛法不确定度评定[J]. 化学分析计量, 2021, 30(6): 80-84. doi: 10.3969/j.issn.1008-6145.2021.06.018 [25] 黄欢, 黄宇. 基于R语言的蒙特卡洛法在不确定度评定中的应用[J]. 化学分析计量, 2022, 31(2): 88-93. doi: 10.3969/j.issn.1008-6145.2022.02.019 [26] Jaworski M, Szatkowski J, Kossek T. Determination of measurement uncertainty by a Monte Carlo method for an RF power sensor calibration system using a VNA[J]. Metrology and Measurement Systems, 2023, 703-720. [27] Constantino, Pablo. Aspectos computacionales en la estimación de incertidumbres de ensayo por el Método de Monte Carlo[J]. Innotec, 2013(8): 13-22. [28] 张雯. 酸度计检定仪的研制[D]. 成都: 电子科技大学, 2009. [29] 宁铨, 修宏宇. 酸度计检定中热电势对测量结果的影响[J]. 中国计量, 2010(5): 106-107. doi: 10.3969/j.issn.1006-9364.2010.05.054 [30] Constantino LP. MCM Alchimia Methods: solved examples on computer-aided uncertainty quantification[J]. Innotec, 2021, 30(22 jul-dic): 1-25.