Development and Application of Automatic Ultraviolet Oil Measuring Instrument
-
摘要: 根据中华人民共和国国家环境保护标准HJ 970-2018《水质 石油类的测定紫外分光光度法(试行)》的测试要求,分析研究紫外分光光度法测油原理,自动化和集成化设计进样系统、萃取系统、吸附过滤系统和检测系统,研制出新型全自动紫外测油仪。重点介绍仪器结构、原理、使用及维护。通过参考JJF(闽)1141-2023《紫外测油仪校准规范》对仪器进行校准,在(0.0~16.0)mg/L测量范围时,仪器测量线性为
0.9999 ;在测量值不大于2 mg/L时,以1.0 mg/L为例,测得仪器示值误差为−0.042 mg/L;在测量值大于2 mg/L时,以4.0 mg/L、8.0 mg/L和16.0 mg/L为例,测得仪器示值误差分别为−3.6%、−2.2%和−1.7%。此外,还对仪器重复性、最小检出浓度、零点漂移和示值漂移等项目进行了校准。通过以上各项校准实验验证仪器性能指标优良。环保工作者通过使用全自动紫外测油仪,能够降低工作强度,提高工作效率,减少有机物危害,确保环境监测工作准确高效。Abstract: Based on the testing requirements of the national environmental protection standard HJ 970-2018 “Water quality- Determination of petroleum-Ultraviolet spectrophotometric method”, the principle of UV oil spectrophotometer was analysed. Then, a new type of automatic ultraviolet oil measuring instrument was developed by means of automatic and integrated design of injection system, extraction system, adsorption system and detection system. The structure, principle, application and maintenance of the instrument were introduced emphatically. In addition, the instrument was calibrated according to JJF (Min) 1141-2023 “Calibration Specification for Oil Content Analyzers of Ultraviolet”. In the range of (0.0~16.0) mg/L, the linearity was 0.9999. When the measured value was not more than 2 mg/L, taking 1.0 mg/L as example, the indication error was −0.042 mg/L. When the measured value was more than 2 mg/L, taking 4.0 mg/L, 8.0 mg/L and 16.0 mg/L as examples, the indication error were −3.6% , −2.2% and −1.7%, respectively. In addition, the items of instrument repeatability, minimum detectable concentration, zero drift and indication drift were calibrated. Through the above calibration experiments verified that the performance of the instrument was excellent. By using the automatic ultraviolet oil measuring instrument, the environmental protection workers could reduce the working intensity, improve the working efficiency, reduce the organic hazards, and ensure the accuracy and efficiency of the environmental monitoring work. -
表 1 仪器测量线性校准结果
Table 1. Linear calibration results of instrument
标准物质
浓度值(mg/L)0.0 1.0 2.0 4.0 8.0 16.0 吸光度 0.000 0.054 0.089 0.178 0.359 0.712 线性相关系数 0.9999 表 2 仪器示值误差校准结果
Table 2. Indication error calibration results of instrument
标准值(mg/L) 测量值(mg/L) 平均值(mg/L) 示值误差 1.0 0.965 0.957 0.953 0.9583 −0.042 mg/L 4.0 3.878 3.855 3.842 3.858 −3.6% 8.0 7.923 7.819 7.734 7.825 −2.2% 16.0 15.84 15.73 15.63 15.73 −1.7% 表 3 仪器重复性校准结果
Table 3. Repeatability calibration results of instrument
标准值
(mg/L)测量值
(mg/L)平均值
(mg/L)重复性 8.0 7.923 7.819 7.734 7.772 1.1% 7.731 7.715 7.711 表 4 仪器最小检出浓度校准结果
Table 4. Minimum detection concentration calibration results of instrument
标准值
(mg/L)测量值
(mg/L)标准偏差
(mg/L)最小检出浓度
(mg/L)1.0 0.945 0.930 0.927 0.010 0.030 0.921 0.923 0.915 表 5 仪器零点漂移校准结果
Table 5. Zero drift calibration results of instrument
标准值
(mg/L)初始示值(mg/L) 测量值(mg/L) 零点漂移(mg/L) 1.0 0.945 0.945 0.933 0.930 -0.018 0.931 0.928 0.927 表 6 仪器示值漂移校准结果
Table 6. Indication drift calibration results of instrument
标准值
(mg/L)初始示值
(mg/L)测量值
(mg/L)示值漂移 16.0 15.89 15.87 15.80 15.77 −1.3% 15.75 15.70 15.69 -
[1] 历军, 汤翊, 黄岁樑, 等. 生物质对水体油污染吸附处理的研究进展[J]. 环境污染与防治, 2014, 36(10): 79-87. doi: 10.3969/j.issn.1001-3865.2014.10.016 [2] 王丽敏. 紫外分光光度法测定水体中石油类污染物的方法[J]. 净水技术, 2020, 39(8): 13-17,22. [3] 麦伟清, 谷巍, 齐大勇. 重量法测定污水中矿物油含量的改进[J]. 石油化工, 1999, 28(6): 402-403. doi: 10.3321/j.issn:1000-8144.1999.06.015 [4] 王玉纯, 林大泉. 用红外分光光度法测定水体中石油烃含量的研究[J]. 石油化工环境保护, 1988(2): 53-57. [5] 周建勇, 顾跃明. 紫外分光光度法测定工业废水中的油含量[J]. 冶金分析, 2002, 22(3): 51-52,50. doi: 10.3969/j.issn.1000-7571.2002.03.018 [6] 方宇翘. 萃取—荧光光度法测定水中油含量[J]. 上海环境科学, 1990, 9(1): 19-20. [7] 中华人民共和国环境保护部. 水质 挥发性石油烃(C6-C9)的测定 吹扫捕集/气相色谱法: HJ 893-2017[S]. 北京: 中国环境科学出版社, 2017. [8] 中华人民共和国环境保护部. 水质 可萃取性石油烃(C10-C40)的测定 气相色谱法: HJ 894-2017[S]. 北京: 中国环境科学出版社, 2017. [9] 生态环境部. 水质 石油类和动植物油类的测定 红外分光光度法: HJ 637-2018[S]. 北京: 中国环境科学出版社, 2018. [10] 生态环境部. 水质 石油类的测定 紫外分光光度法(试行): HJ 970-2018[S]. 北京: 中国环境科学出版社, 2018. [11] 田苗苗, 于兆虎, 王利杰, 等. 全自动紫外测油仪的校准方法研究[J]. 新技术新工艺, 2023, 426(6): 66-69. [12] 庞艳华, 丁永生, 公维民. 紫外分光光度法测定水中油含量[J]. 大连海事大学学报, 2002, 28(4): 68-71. doi: 10.3969/j.issn.1006-7736.2002.04.019 [13] 王敏, 赵冬宝. 紫外分光光度法测定污水中油含量的改进[J]. 水道港口, 2006(3): 195-197. doi: 10.3969/j.issn.1005-8443.2006.03.014 [14] 展惠英. 紫外分光光度法测定废水中油的含量[J]. 甘肃联合大学学报(自然科学版), 2007, 21(1): 65-66. [15] 宋媛媛, 吴月, 吕晓昊. 全自动紫外测油仪测试水体中石油类污染物[J]. 山东化工, 2022, 51(12): 226-228. doi: 10.3969/j.issn.1008-021X.2022.12.069 [16] 覃羽雯, 吕勇, 张志朋. 自动萃取红外法与手动萃取红外法测定污水中石油类浅析[J]. 广东化工, 2022, 49(13): 134-136,161. doi: 10.3969/j.issn.1007-1865.2022.13.043 [17] 张连婧, 冯文艇, 刘建军. 正己烷体内外诱导毒性效应的机制研究进展[J]. 中华劳动卫生职业病杂志, 2023, 41(5): 388-396. doi: 10.3760/cma.j.cn121094-20220303-00109 [18] 吴礼康, 田亚锋, 朱志良. 《正己烷职业危害防护导则》的研制与评价[J]. 职业卫生与应急救援, 2013(3): 62-63. [19] 周建光, 郑健, 宋庆宇, 等. 一种新型红外测油仪的研制[J]. 分析仪器, 2002(1): 8-12. doi: 10.3969/j.issn.1001-232X.2002.01.002 [20] 杨琨, 雷俊锋, 曾立波, 等. 一种新型车载傅里叶变换红外测油仪的研制[J]. 光谱学与光谱分析, 2009, 29(9): 2375-2378. [21] 邵志鹏, 王双保, 李学青. 基于ARM-Linux的便携式红外测油仪的设计[J]. 仪表技术与传感器, 2015(5): 46-49,52. doi: 10.3969/j.issn.1002-1841.2015.05.014 [22] 郭波, 张森, 林振强, 等. 全自动红外测油仪的研制[J]. 化学分析计量, 2019, 28(3): 111-114. doi: 10.3969/j.issn.1008-6145.2019.03.028 [23] 曹玉玲 , 周振, 宋欣, 等. 全自动紫外测油仪设计及验证研究[J]. 现代制造技术与装备, 2022, 58(6): 202-204, 209. [24] 张森, 郭波, 林振强, 等. 全自动测油仪新型自动萃取装置的研制[J]. 化学分析计量, 2019, 28(2): 120-123. doi: 10.3969/j.issn.1008-6145.2019.02.027 [25] 程家运. 水中石油类测定方法及吸附剂活性的探讨[J]. 油气田环境保护, 2016, 26(4): 44-45. doi: 10.3969/j.issn.1005-3158.2016.04.014 [26] 凌永平. 红外分光光度法测定水源水及饮用水中的石油类[J]. 城镇供水, 2003(5): 24-27. [27] 景光伟. 760CRT双光束紫外可见分光光度计常见故障与维修[J]. 现代仪器, 2001(1): 48. [28] 福建省市场监督管理局. 紫外测油仪校准规范: JJF(闽)1141-2023[EB/OL]. (2023-07-26)[2024-07-17]. https://scjgj.fujian.gov.cn/fw/cxfw/dfjljs/202312/P020231201562945349056.pdf. [29] 谢国清. 关于测定地表水石油类中正己烷透光率的探讨[J]. 生态环境与保护, 2023, 6(4): 60-62. [30] 李东霖. 红外法和紫外法测定水中石油类的新旧标准比较研究[J]. 广西水利水电, 2023(1): 146-152.