留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流体粘度测量技术研究进展

李有强 王俊 范旭 侯立凯

李有强,王俊,范旭,等. 流体粘度测量技术研究进展[J]. 计量科学与技术,待出版 doi: 10.12338/j.issn.2096-9015.2024.0212
引用本文: 李有强,王俊,范旭,等. 流体粘度测量技术研究进展[J]. 计量科学与技术,待出版 doi: 10.12338/j.issn.2096-9015.2024.0212
LI Youqiang, WANG Jun, FAN Xu, HOU Likai. Research Progress of Fluid Viscosity Measurement Technologies[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0212
Citation: LI Youqiang, WANG Jun, FAN Xu, HOU Likai. Research Progress of Fluid Viscosity Measurement Technologies[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0212

流体粘度测量技术研究进展

doi: 10.12338/j.issn.2096-9015.2024.0212
基金项目: 浙江省自然科学基金(LY22A020005);国家市场监管总局科技计划 (2022MK035) 。
详细信息
    作者简介:

    李有强(2001-),中国计量大学硕士研究生,研究方向:微流控,邮箱:S23020804037@cjlu.edu.cn

    通讯作者:

    侯立凯(1988-),中国计量大学副教授,研究方向:微纳尺度流动与测量仪器,邮箱:houlikai@cjlu.edu.cn

Research Progress of Fluid Viscosity Measurement Technologies

  • 摘要: 粘度是衡量流体粘滞系数大小的重要流体特性,选择合适的粘度测量方法对工业生产和科研开发至关重要。随着生物医疗、新能源、新材料等领域对微流体应用的拓展,针对微流体的粘度测量方法逐渐涌现,为更好地满足人们选取粘度测量方法的需求,并为相关研究人员提供更全面、更先进的粘度测量方法指南,对流体粘度测量技术发展的现状进行了综述,将当前粘度测量方法分为两类:传统宏观流体的粘度测量方法和微流体的粘度测量方法。对于传统宏观流体的测量方法,综述了旋转粘度计、振荡粘度计、落体粘度计和超声粘度计等粘度测量方法及装置,并介绍了其结构、测量原理、优缺点以及当前现状;而对于微流体粘度测量方法,介绍了基于微机电系统(Micro-Electro-Mechanical System,MEMS)的粘度计、基于光学的微流体粘度计、基于液滴的微流体粘度计和纸基微流体粘度计等几类新型的微流体粘度测量方法及装置,针对其结构特点、测量准确度、测量原理等方面进行展开探讨,并与传统粘度计进行比较,突出各自优点。结论表明,尽管在进行大规模工业生产过程中传统粘度测量装置依旧是首选,但新型的微流体粘度计因其样本量少、测量效率高、成本低、体积小等优势而日益得到重视,为选择最适合特定需求的粘度测量方法提供了有价值的参考。
  • 图  1  同轴圆筒式粘度计(Searle型)

    Figure  1.  Coaxial cylinder-type viscometer(Searle type)

    图  2  锥板式粘度计

    Figure  2.  Cone and plate-type viscometer

    图  3  平行板式粘度计

    Figure  3.  Parallel plate-type viscometer

    图  4  振荡悬挂系统

    Figure  4.  Oscillating suspension system

    图  5  毛细管粘度计测量原理图

    Figure  5.  Principle diagram of capillary viscometer measurement

    图  6  乌式粘度计

    Figure  6.  Ubbelohde viscometer

    图  7  落球式粘度计

    Figure  7.  Falling ball viscometer

    图  8  悬臂梁受力图

    Figure  8.  Cantilever beam force diagram

    图  9  基于光镊的微流体粘度测量装置

    Figure  9.  Microfluidic viscosity measurement device based on optical tweezer

    图  10  基于微液滴生成频率的粘度测量装置

    Figure  10.  Viscosity measurement device based on micro droplet generation frequency

  • [1] Stratiev D, Shishkova I, Dinkov R, et al. Prediction of petroleum viscosity from molecular weight and density[J]. Fuel, 2023, 331: 125679. doi: 10.1016/j.fuel.2022.125679
    [2] Gabsi K, Trigui M, Barrington S, et al. Evaluation of rheological properties of date syrup[J]. Journal of Food Engineering, 2013, 117(1): 165-172. doi: 10.1016/j.jfoodeng.2013.02.017
    [3] Alexy T. Physical properties of blood and their relationship to clinical conditions[J]. Frontiers in Physiology. 2022, 13: 1-10.
    [4] Zhu L, Lin W. Constructing a NIR fluorescent probe for ratiometric imaging viscosity in mice and detecting blood viscosity in folliculitis mice and peritonitis mice[J]. Sensors and Actuators B: Chemical, 2022, 352: 131042. doi: 10.1016/j.snb.2021.131042
    [5] Goutham R, Rohit P, Vigneshwar S S, et al. Ionic liquids in wastewater treatment: A review on pollutant removal and degradation, recovery of ionic liquids, economics and future perspectives[J]. Journal of Molecular Liquids, 2022, 349: 118150. doi: 10.1016/j.molliq.2021.118150
    [6] Cabrera S M, Winnubst L, Richter H, et al. Performance evaluation of an industrial ceramic nanofiltration unit for wastewater treatment in oil production[J]. Water Research, 2022, 220: 118593. doi: 10.1016/j.watres.2022.118593
    [7] 张健, 赵雄虎, 皮家安, 等. 粘度的测量方法及进展[J]. 中国仪器仪表, 2018(4): 81-86. doi: 10.3969/j.issn.1005-2852.2018.04.019
    [8] CHENG J, GROBNER J, HORT N, et al. Measurement and calculation of the viscosity of metals—a review of the current status and developing trends[J]. Measurement Science & Technology, 2014, 25(6): 11260-11276.
    [9] 郁黄华, 庄豫玺, 顾申申. 基于阿里云的粘度计远程测控系统设计[J]. 工业控制计算机, 2022, 35(05): 46-8,72. doi: 10.3969/j.issn.1001-182X.2022.05.018
    [10] MCKENNELL R. Cone-Plate Viscometer[J]. Analytical Chemistry, 1956, 28(11): 1710-1714. doi: 10.1021/ac60119a021
    [11] Walters K, Jones W M. Measurement of viscosity[M]. 3rd ed. USA: Butterworth-Heinemann, 2003: 45-52.
    [12] MEGALINGAM A, AHMAD A H B, MAAROF M R B, et al. Viscosity measurements in semi-solid metal processing: current status and recent developments[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(3): 1435-1459.
    [13] GHANBARI A, MOUSAVI Z, HEUZEY M-C, et al. Experimental methods in chemical engineering: Rheometry[J]. The Canadian Journal of Chemical Engineering, 2020, 98(7): 1456-1470. doi: 10.1002/cjce.23749
    [14] RENUKA A, MUTHTAMILSELVAN M, DOH D-H, et al. Entropy analysis and nanofluid past a double stretchable spinning disk using Homotopy Analysis Method[J]. Mathematics and Computers in Simulation, 2020, 171: 152-169. doi: 10.1016/j.matcom.2019.05.008
    [15] CHEVREL M O, LATCHIMY T, BATIER L, et al. A new portable field rotational viscometer for high-temperature melts[J]. Review of Scientific Instruments, 2023, 94(10): 105116. doi: 10.1063/5.0160247
    [16] DINSDALE A T, QUESTED P N. The viscosity of aluminium and its alloys--A review of data and models [J]. Journal of Materials Science, 2004, 39(24): 7221-7228.
    [17] PATOUILLET K, DELACROIX J. Development of an oscillating cup viscometer for viscosity measurement of liquid metals at very high temperatures[J]. Measurement, 2023, 220: 113370. doi: 10.1016/j.measurement.2023.113370
    [18] KEHR M, HOYER W, EGRY I. A New High-Temperature Oscillating Cup Viscometer[J]. International Journal of Thermophysics, 2007, 28(3): 1017-1025. doi: 10.1007/s10765-007-0216-9
    [19] SHAMURATOV J, MUSTAFAYEV O, KADIROV I. New Viscometers for Measuring the Viscosity of Liquids[J]. Journal of Engineering, 2024, 2024(1): 6877306.
    [20] SHVIDKOVSKIY Y G. Certain problems related to the viscosity of fused metals [M]. Washington: National Aeronautics and Space Administration, 1962.
    [21] ROSCOE R. Viscosity Determination by the Oscillating Vessel Method I: Theoretical Considerations[J]. Proceedings of the Physical Society, 1958, 72(4): 576. doi: 10.1088/0370-1328/72/4/312
    [22] KESTIN J, NEWELL G F. Theory of oscillation type viscometers: The oscillating cup: Part I[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1957, 8(6): 433-449.
    [23] KNAPPWOST A. Ein neues Verfahren zur Hochtemperaturviskosimetrie nach der Methode des schwingenden Hohlkörpers[J]. Zeitschrift für Physikalische Chemie, 1952, 200(1): 81-89.
    [24] MIRGORODSKAYA A. The history of the development of the capillary method for measuring kinematic viscosity: from the Lomonosov viscometer to the information-measuring system[J]. Measurement Techniques, 2023, 66(8): 610-618. doi: 10.1007/s11018-023-02273-y
    [25] 张正东. JJG155-2016《工作毛细管黏度计检定规程》 解读[J]. 中国计量, 2017(3): 128-130.
    [26] 金愿, 胡央丽, 朱绚华. 工作毛细管黏度计全国量值比对及结果分析[J]. 上海计量测试, 2024, 51(2): 49-53. doi: 10.3969/j.issn.1673-2235.2024.02.016
    [27] 袁晓丽. 毛细管黏度计检定过程中影响因素的分析[J]. 中文科技期刊数据库(全文版)自然科学, 2024(5): 0052-0055.
    [28] HADI H S, AISYAH P Y, FITRIYANAH D N, et al. Fluid Viscosity Measurement With Capillary Pipe Based On Internet Of Things (IoT); Proceedings of the 2021 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), December 8-9, 2021[C]. Surabya: Institute of Electrical and Electronics Engineers Inc, 2021: 66-72.
    [29] HARANGUS K, KAKUCS A. Mass-Measurement-based Automatization of the Engler-Viscometer[J]. Acta Polytechnica Hungarica, 2021, 18(5): 77-92. doi: 10.12700/APH.18.5.2021.5.6
    [30] 高桂丽, 李大勇, 石德全. 液体粘度测定方法及装置研究现状与发展趋势简述[J]. 化工自动化及仪表, 2006, 33(2): 65-70. doi: 10.3969/j.issn.1000-3932.2006.02.018
    [31] 赵北君, 朱世富, 李正辉, 等. 光电落球粘度计的研制[J]. 四川大学学报: 自然科学版, 1994, 31(2): 280-282.
    [32] DARIDON J-L, BAZILE J-P, GALLIERO G. Advances in Falling-Cylinder Viscometry: A Comprehensive Review[J]. International Journal of Thermophysics, 2024, 45(5): 1-47.
    [33] HARRIS K R. A Falling Body High-Pressure Viscometer[J]. International Journal of Thermophysics, 2023, 44(12): 184. doi: 10.1007/s10765-023-03285-0
    [34] ALI S H, AL-ZUKY A A D, AL-SALEH A H, et al. Measure liquid viscosity by tracking falling ball Automatically depending on image processing algorithm[J]. Journal of Physics: Conference Series, 2019: 022002.
    [35] GITIS M, CHUPRIN V. Application of surface and normal ultrasonic waves for measuring the parameters of technical fluids: I. Shear viscosity measurements[J]. Technical physics, 2012, 57(5): 671-676. doi: 10.1134/S1063784212050106
    [36] MASTROMARINO S, ROOK R, DE HAAS D, et al. An ultrasonic shear wave viscometer for low viscosity Newtonian liquids[J]. Measurement Science and Technology, 2021, 32(12): 125305. doi: 10.1088/1361-6501/ac200f
    [37] PUNEETH S, KULKARNI M B, GOEL S. Microfluidic viscometers for biochemical and biomedical applications: A review[J]. Engineering Research Express, 2021, 3(2): 022003. doi: 10.1088/2631-8695/abfd47
    [38] 黄琳雅, 赵立波, 罗国希, 等. 基于微机械电子技术的黏度测量传感器[J]. 机械工程学报, 2021, 57(8): 13-22.
    [39] ODEN PI. Viscosity measuring using microcantilevers: US 6, 269, 685 B1[P]. 2001-08-07.
    [40] ODEN PI, CHEN GY, STEELE R, et al. Viscous drag measurements utilizing microfabricated cantilevers[J]. Applied physics letters, 1996, 68(26): 3814-3816. doi: 10.1063/1.116626
    [41] ETCHART I, CHEN H, DRYDEN P, et al. MEMS sensors for density–viscosity sensing in a low-flow microfluidic environment[J]. Sensors and Actuators A: Physical, 2008, 141(2): 266-275. doi: 10.1016/j.sna.2007.08.007
    [42] HU Y, ZHAO L, WANG T, et al. The fluid viscosity measurement based on variable cross-section MEMS cantilever under torsional excitation; proceedings of the 2015 IEEE SENSORS, F, 2015 [C]. IEEE.
    [43] ZHAO L, HU Y, WANG T, et al. A MEMS resonant sensor to measure fluid density and viscosity under flexural and torsional vibrating modes[J]. Sensors, 2016, 16(6): 830. doi: 10.3390/s16060830
    [44] GONZALEZ M, SEREN H R, HAM G, et al. Viscosity and density measurements using mechanical oscillators in oil and gas applications[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 67(4): 804-810.
    [45] ZHANG Y, WU X, WANG Y, et al. Measurement of the microscopic viscosities of microfluids with a dynamic optical tweezers system[J]. Laser physics, 2014, 24(6): 065601. doi: 10.1088/1054-660X/24/6/065601
    [46] TASSIERI M, GIUDICE F D, ROBERTSON E J, et al. Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’[J]. Scientific reports, 2015, 5(1): 8831. doi: 10.1038/srep08831
    [47] CHEN W-Y, HUNG C-J, LIU C-Y. Microscopic Blood Viscosity Measurement using Optical Fiber Tweezers Imaging System; proceedings of the 2023 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), F, 2023 [C]. IEEE.
    [48] STATSENKO A, INAMI W, KAWATA Y. Measurement of viscosity of liquids using optical tweezers[J]. Optics Communications, 2017, 402: 9-13. doi: 10.1016/j.optcom.2017.05.034
    [49] 杜林, 周嘉. 基于微流控原理的液体粘度测量方法研究[J]. 仪器仪表学报, 2018, 39(5): 188-194.
    [50] ANDRé E, PANNACCI N, DALMAZZONE C, et al. A new way to measure viscosity in droplet-based microfluidics for high throughput analysis[J]. Soft Matter, 2019, 15(3): 504-514. doi: 10.1039/C8SM02372G
    [51] MENA S E, LI Y, MCCORMICK J, et al. A droplet-based microfluidic viscometer for the measurement of blood coagulation[J]. Biomicrofluidics, 2020, 14(1): 014109. doi: 10.1063/1.5128255
    [52] COCHARD-MARCHEWKA P, BREMOND N, BAUDRY J. Droplet-based microfluidic platform for viscosity measurement over extended concentration range[J]. Lab on a Chip, 2023, 23(9): 2276-2285. doi: 10.1039/D3LC00073G
    [53] MARTINEZ A W, PHILLIPS S T, BUTTE M J, et al. Patterned paper as a platform for inexpensive, low‐volume, portable bioassays[J]. Angewandte Chemie, 2007, 119(8): 1340-1342. doi: 10.1002/ange.200603817
    [54] CATE D M, ADKINS J A, METTAKOONPITAK J, et al. Recent developments in paper-based microfluidic devices[J]. Analytical chemistry, 2015, 87(1): 19-41. doi: 10.1021/ac503968p
    [55] RAYAPROLU A, SRIVASTAVA S K, ANAND K, et al. Fabrication of cost-effective and efficient paper-based device for viscosity measurement[J]. Analytica Chimica Acta, 2018, 1044: 86-92. doi: 10.1016/j.aca.2018.05.036
    [56] PUNEETH S, GOEL S. Novel 3D printed microfluidic paper-based analytical device with integrated screen-printed electrodes for automated viscosity measurements[J]. IEEE Transactions on Electron Devices, 2019, 66(7): 3196-3201. doi: 10.1109/TED.2019.2913851
    [57] JANG I, BERG K E, HENRY C S. Viscosity measurements utilizing a fast-flow microfluidic paper-based device[J]. Sensors and Actuators B: Chemical, 2020, 319: 128240. doi: 10.1016/j.snb.2020.128240
  • 加载中
图(10)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  79
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-29
  • 录用日期:  2024-08-13
  • 修回日期:  2024-08-01
  • 网络出版日期:  2024-08-29

目录

    /

    返回文章
    返回