留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯量子点及其标准物质的研究进展

刘然 吕庆斌 赵海波 梁亮 沈上圯 赵晓宁

刘然,吕庆斌,赵海波,等. 石墨烯量子点及其标准物质的研究进展[J]. 计量科学与技术,待出版 doi: 10.12338/j.issn.2096-9015.2024.0217
引用本文: 刘然,吕庆斌,赵海波,等. 石墨烯量子点及其标准物质的研究进展[J]. 计量科学与技术,待出版 doi: 10.12338/j.issn.2096-9015.2024.0217
LIU Ran, LV Qingbin, ZHAO Haibo, LIANG Liang, SHEN Shangyi, ZHAO Xiaoning. Research Progress of Graphene Quantum Dots and Graphene Quantum Dots Reference Materials[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0217
Citation: LIU Ran, LV Qingbin, ZHAO Haibo, LIANG Liang, SHEN Shangyi, ZHAO Xiaoning. Research Progress of Graphene Quantum Dots and Graphene Quantum Dots Reference Materials[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0217

石墨烯量子点及其标准物质的研究进展

doi: 10.12338/j.issn.2096-9015.2024.0217
基金项目: 国家市场监督管理总局科技计划项目(2022MK002);国家重点研发计划(2022YFF0606105)。
详细信息
    作者简介:

    刘然(1991-),北京市计量检测科学研究院博士后,研究方向:微纳米材料计量、储能技术检测等,邮箱:liur@bjjl.cn

    通讯作者:

    赵晓宁(1975-),北京市计量检测科学研究院正高级工程师,研究方向:环境颗粒物及生物气溶胶计量分析、功能性微球及纳米材料合成与应用,邮箱:zhaoxiaoning@bjjl.cn

Research Progress of Graphene Quantum Dots and Graphene Quantum Dots Reference Materials

  • 摘要: 石墨烯量子点是指横向尺寸小于30 nm,片层层数在10层以下的一种新型的荧光碳材料,由于其独特的特性和广阔的应用前景,受到了广泛的关注。主要介绍了石墨烯量子点的结构、电学和光学特性,总结了目前石墨烯量子点的主要制备方法,对其在新能源、催化、传感、生物医药、环境修复等方面的应用进行了详细的介绍,最后对石墨烯量子点标准物质的研究进展进行了简单的介绍。未来对石墨烯量子点的研究主要集中在提高光致发光量子产率和生产量,以及拓展其应用范围和制备石墨烯量子点标准物质上,随着新材料设计理念的进步和量子技术的不断发展,石墨烯量子点及其标准物质有望在更多领域展现出其独特的优势和应用价值。
  • [1] Sheikh Mohd Ghazali SAI, Fatimah I, Zamil ZN, et al. Graphene quantum dots: A comprehensive overview[J]. Open Chemistry, 2023, 21(1).
    [2] Nxele SR, Nyokong T. Time-dependent characterization of graphene quantum dots and graphitic carbon nitride quantum dots synthesized by hydrothermal methods[J]. Diamond and Related Materials, 2022, 121.
    [3] Rabeya R, Mahalingam S, Manap A, et al. Structural defects in graphene quantum dots: A review[J]. International Journal of Quantum Chemistry, 2022, 122(12).
    [4] Raghavan A, Radhakrishnan M, Soren K, et al. Biological Evaluation of Graphene Quantum Dots and Nitrogen-Doped Graphene Quantum Dots as Neurotrophic Agents[J]. ACS Applied Bio Materials, 2023, 6(6): 2237-2247. doi: 10.1021/acsabm.3c00099
    [5] Rani P, Dalal R, Srivastava S, et al. Tuning the properties of graphene quantum dots by passivation[J]. Physical Chemistry Chemical Physics, 2022, 24(42): 26232-26240. doi: 10.1039/D2CP03990G
    [6] Tan X, Zhou F, Li W, et al. Research Progress on the Application of Graphene Quantum Dots[J]. Coatings, 2023, 13(11).
    [7] Chen W, Lv G, Hu W, et al. Synthesis and applications of graphene quantum dots: a review[J]. Nanotechnology Reviews, 2018, 7(2): 157-185. doi: 10.1515/ntrev-2017-0199
    [8] Ansari SA. Graphene Quantum Dots: Novel Properties and Their Applications for Energy Storage Devices[J]. Nanomaterials, 2022, 12(21).
    [9] Thai V-P, Tran DN, Kosugi K, et al. One-Step Synthesis of N-Doped Graphene Quantum Dots via Plasma Contacting Liquid for Multiple Heavy Metal Ion Detection[J]. ACS Applied Nano Materials, 2024, 7(11): 12664-12672. doi: 10.1021/acsanm.4c01134
    [10] Ponomarenko LA, Schedin F, Katsnelson MI, et al. Chaotic Dirac Billiard in Graphene Quantum Dots[J]. Science, 2008, 320(5874): 356-358. doi: 10.1126/science.1154663
    [11] Ji Z, Dervishi E, Doorn SK, et al. Size-Dependent Electronic Properties of Uniform Ensembles of Strongly Confined Graphene Quantum Dots[J]. The Journal of Physical Chemistry Letters, 2019, 10(5): 953-959. doi: 10.1021/acs.jpclett.9b00119
    [12] Zhu S, Wang L, Li B, et al. Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots[J]. Carbon, 2014, 77: 462-472. doi: 10.1016/j.carbon.2014.05.051
    [13] Qian J, Shen C, Yan J, et al. Tailoring the Electronic Properties of Graphene Quantum Dots by P Doping and Their Enhanced Performance in Metal-Free Composite Photocatalyst[J]. The Journal of Physical Chemistry C, 2017, 122(1): 349-358.
    [14] Deng J, Lu Q, Li H, et al. Large scale preparation of graphene quantum dots from graphite oxide in pure water via one-step electrochemical tailoring[J]. RSC Advances, 2015, 5(38): 29704-29707. doi: 10.1039/C4RA16805D
    [15] Liang L, Kong Z, Kang Z, et al. Theoretical Evaluation on Potential Cytotoxicity of Graphene Quantum Dots[J]. ACS Biomaterials Science & Engineering, 2016, 2(11): 1983-1991.
    [16] Chong Y, Ma Y, Shen H, et al. The in vitro and in vivo toxicity of graphene quantum dots[J]. Biomaterials, 2014, 35(19): 5041-5048. doi: 10.1016/j.biomaterials.2014.03.021
    [17] Xie Y, Wan B, Yang Y, et al. Cytotoxicity and autophagy induction by graphene quantum dots with different functional groups[J]. Journal of Environmental Sciences, 2019, 77: 198-209. doi: 10.1016/j.jes.2018.07.014
    [18] Dong Y, Shao J, Chen C, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid[J]. Carbon, 2012, 50(12): 4738-4743. doi: 10.1016/j.carbon.2012.06.002
    [19] Qu D, Zheng M, Du P, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts[J]. Nanoscale, 2013, 5(24).
    [20] Zhang C, Cui Y, Song L, et al. Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value[J]. Talanta, 2016, 150: 54-60. doi: 10.1016/j.talanta.2015.12.015
    [21] Vu Tuyet Nhung T, Van Tuyen H, Tran N, et al. S, N co-doped graphene quantum dots fabricated by rapid microwave-assisted pyrolysis and their optical properties[J]. Materials Today Communications, 2023, 37.
    [22] Budak E, Aykut S, Paşaoğlu ME, et al. Microwave assisted synthesis of boron and nitrogen rich graphitic quantum dots to enhance fluorescence of photosynthetic pigments[J]. Materials Today Communications, 2020, 24.
    [23] Tang L, Ji R, Li X, et al. Size‐Dependent Structural and Optical Characteristics of Glucose‐Derived Graphene Quantum Dots[J]. Particle & Particle Systems Characterization, 2013, 30(6): 523-531.
    [24] Wen J, Li M, Xiao J, et al. Novel oxidative cutting graphene oxide to graphene quantum dots for electrochemical sensing application[J]. Materials Today Communications, 2016, 8: 127-133. doi: 10.1016/j.mtcomm.2016.07.006
    [25] Huang H, Yang S, Li Q, et al. Electrochemical Cutting in Weak Aqueous Electrolytes: The Strategy for Efficient and Controllable Preparation of Graphene Quantum Dots[J]. Langmuir, 2017, 34(1): 250-258.
    [26] Ganganboina AB, Doong R-A. Nitrogen doped graphene quantum dot-decorated earth-abundant nanotubes for enhanced capacitive deionization[J]. Environmental Science: Nano, 2020, 7(1): 228-237. doi: 10.1039/C9EN00852G
    [27] Gebreegziabher GG, Asemahegne AS, Ayele DW, et al. Polyaniline–graphene quantum dots (PANI–GQDs) hybrid for plastic solar cell[J]. Carbon Letters, 2019, 30(1): 1-11.
    [28] AlSalem HS, Katubi KMS, Binkadem MS, et al. Fabrication of Asymmetric Supercapacitors (AC@GQDs//AC) with High Electrochemical Performance Utilizing Activated Carbon and Graphene Quantum Dots[J]. ACS Omega, 2023, 8(43): 40808-40816. doi: 10.1021/acsomega.3c05882
    [29] Gong L, Yang R, Liu R, et al. Chemical synthesis of dendritic interlaced network graphene quantum dots/sulfur composite for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2021, 855.
    [30] Shan C, Liu Z, Li F, et al. Ternary TiO2/P-GQDs/AgI nanocomposites with n-p-n heterojunctions for enhanced visible photocatalysis[J]. Journal of Nanoparticle Research, 2023, 25(7).
    [31] Guo Q, Feng J, Liu H, et al. Effects of hydronium and hydroxide ion/group on oxygen reduction reaction electrocatalytic activities of N-doped graphene quantum dots[J]. Molecular Catalysis, 2022, 517.
    [32] Liu Z, Cai X, Lin X, et al. Signal-on fluorescent sensor based on GQDs–MnO2 composite for glutathione[J]. Analytical Methods, 2016, 8(11): 2366-2374. doi: 10.1039/C5AY03108G
    [33] Kulandaiswamy AJ, Sharma N, Nesakumar N, et al. S, N‐GQDs Enzyme Mimicked Electrochemical Sensor to Detect the Hazardous Level of Monocrotophos in Water[J]. Electroanalysis, 2019, 32(5): 971-977.
    [34] Li Z, Cheng Z, Wang Y, et al. Single-layer graphene based resistive humidity sensor enhanced by graphene quantum dots[J]. Nanotechnology, 2024, 35(18).
    [35] Li B, Xiao X, Hu M, et al. Mn, B, N co-doped graphene quantum dots for fluorescence sensing and biological imaging[J]. Arabian Journal of Chemistry, 2022, 15(7).
    [36] Shi S-C, Liu H-H, Chen T-H, et al. Preparation of aldehyde-graphene quantum dots from glucose for controlled release of anticancer drug[J]. Frontiers in Materials, 2023, 10.
    [37] Raj SK, Yadav V, Bhadu GR, et al. Synthesis of highly fluorescent and water soluble graphene quantum dots for detection of heavy metal ions in aqueous media[J]. Environmental Science and Pollution Research, 2020, 28(34): 46336-46342.
    [38] Anusuya T, Kumar V, Kumar V. Hydrophilic graphene quantum dots as turn-off fluorescent nanoprobes for toxic heavy metal ions detection in aqueous media[J]. Chemosphere, 2021, 282.
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  17
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-30
  • 录用日期:  2024-07-03
  • 修回日期:  2024-07-04
  • 网络出版日期:  2024-07-17

目录

    /

    返回文章
    返回