Abstract:
The brain is a high-level organ with the most delicate structure and complex function in the human body, with a large variety of chemicals, diverse functions, and complex mechanisms of action. Studies have shown that changes in some molecules are involved in cerebral neuropathy tissues in the study of central nervous system diseases. However, due to the analysis and detection methods, sample preparation, imaging technology, and other reasons, it has always been difficult to conduct research on the component analysis, functional identification, and spatial distribution of brain nerve tissue. With the development of mass spectrometry technology and the development of imaging software, a new analysis and detection method, Mass Spectrometry Imaging (MSI), has emerged. This technique combines highly sensitive mass spectrometry with imaging software that provides spatial information of detectors, and is an imaging technique with high sensitivity, no specific labeling, and can monitor the spatial distribution and content changes of multiple target molecules simultaneously, providing a new option for mapping the spatial distribution and content changes of molecules in brain neural tissue. Among them, Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI) has significant advantages in the detection of proteins, lipids, drugs, and small molecules, and is widely used in biological It has been widely used in imaging studies of biological tissues, especially brain neural tissue. At present, with the emergence of some MSI quantitative analysis methods and correction strategies, quantitative mass spectrometry imaging technology (q-MSI) is becoming more and more mature. It can not only be used to visualize the content and in-situ distribution information of various molecules in biological tissues, but also provide absolute analysis of concentration. This paper aims to briefly introduce the basic principle, operation process, sample processing, matrix selection, and spraying, data acquisition and analysis, qualitative and quantitative analysis methods of mass spectrometry imaging, and summarize the application progress of MALDI-MSI in common brain diseases such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, brain injury and ischemic stroke, which is helpful to understand the function of brain central nervous system The mechanism of disease formation and the metabolism of neuro drugs are conducive to the discovery of new drug targets and biomarkers, provide a reference for the study of the potential mechanism of its treatment strategy, and look forward to the future development direction.