Volume 66 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
ZHAO Zuoguang, XU Yandong, LI Zhi, FU Jie. Study on the Relationship Between Gas and Air Through Ultrasonic Gas Meters[J]. Metrology Science and Technology, 2022, 66(1): 60-64. doi: 10.12338/j.issn.2096-9015.2020.0411
Citation: ZHAO Zuoguang, XU Yandong, LI Zhi, FU Jie. Study on the Relationship Between Gas and Air Through Ultrasonic Gas Meters[J]. Metrology Science and Technology, 2022, 66(1): 60-64. doi: 10.12338/j.issn.2096-9015.2020.0411

Study on the Relationship Between Gas and Air Through Ultrasonic Gas Meters

doi: 10.12338/j.issn.2096-9015.2020.0411
  • Available Online: 2021-07-02
  • Publish Date: 2022-01-24
  • The measurement performance of ultrasonic gas meters is, theoretically, independent of the object (i.e. the medium) they measure. However, due to the different acoustic impedances of gas and air, the transmittance of sound waves in the two media is different; due to the difference in shear viscosity and molar mass, the attenuation of sound waves is different. A standard piston-type flow device, with a flow range of (0.016~10) m3/h, the maximum working pressure of 10 kPa and expanded uncertainty of Urel=0.33% (k=2), was used to test three 1.5-level G4 ultrasonic gas meters. The test data showed that 1# had zero drift, which caused its large and medium flow point error to be −5.61% compared to air, and 3# had a wrong-wave and zero-drift phenomenon, which caused its small flow point to have an error of −15.22% compared to air. Therefore, it is recommended that the relationship between gas and air be a mandatory item in type evaluation.
  • loading
  • [1]
    国家质量监督检验检疫总局. 家用超声波燃气表: JB/T12958-2016[S]. 北京: 机械工业出版社, 2017.
    [2]
    北京市技术监督局. 户用超声波燃气表: JJG(京)3001-2017[S]北京: 中国质检出版社, 2017.
    [3]
    蔡树荣. 超声波燃气表技术特性研究与分析[J]. 计量与测试技术, 2019, 46(6): 30-32.
    [4]
    牛立娜, 江航成, 陈红, 等. 超声波燃气表温度适应性测试研讨[J]. 计量技术, 2018(10): 23-26.
    [5]
    邓小远, 李霞, 谢代梁, 等. 超声波燃气表计量性能试验分析[J]. 中国计量大学学报, 2018, 29(3): 251-258. doi: 10.3969/j.issn.2096-2835.2018.03.004
    [6]
    周艳, 李宁, 向德华. 超声波燃气表污染物影响试验分析[J]. 计量技术, 2019(11): 47-52.
    [7]
    邓立三, 陈豫. 超声波燃气表计量特性试验分析[J]. 城市燃气, 2018(9): 17-24. doi: 10.3969/j.issn.1671-5152.2018.09.003
    [8]
    翟义然. 超声波燃气表工况和标况用气量实流数据对比研究[J]. 城市燃气, 2020(2): 14-18. doi: 10.3969/j.issn.1671-5152.2020.02.003
    [9]
    牛今丹. 超声换能器声匹配层设计方法及其声学特性研究[D]. 阿尔滨: 哈尔滨工业大学, 2014.
    [10]
    陈宇, 曾玉松, 陈谦, 等. 一种新的声速推导方法[J]. 大学物理, 2004(12): 16-17. doi: 10.3969/j.issn.1000-0712.2004.12.004
    [11]
    鄢舒, 王殊. 多元混合气体中非线性声衰减的数值模拟[J]. 声学学报(中文版), 2008(6): 481-490.
    [12]
    丁喜波, 王珊, 邹一风. 基于超声波声衰减的甲烷浓度测量方法[J]. 应用基础与工程科学学报, 2018, 26(3): 672-679.
    [13]
    孟成林, 牛立娜, 李国栋, 等. 活塞式气体流量标准装置工作原理及不确定度评定[J]. 计量技术, 2019(11): 38-41.
    [14]
    赵作广, 梁庆凡, 孙彩虹, 等. 多用途活塞式气体微小流量标定装置[J]. 工业计量, 2020, 30(1): 24-28.
    [15]
    邵泽华. 超声波燃气表在家用燃气计量领域的适应性[J]. 煤气与热力, 2018, 38(4): 24-29.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (584) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return