Volume 65 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
XU Tianqi, DU Lei, BAI Jie, SUN Qiao. Uncertainty Evaluation Comparison of Speed Measurements Between 24 GHz and 77 GHz Millimeter-Wave Radar Sensors[J]. Metrology Science and Technology, 2021, 65(9): 3-7, 65. doi: 10.12338/j.issn.2096-9015.2020.9032
Citation: XU Tianqi, DU Lei, BAI Jie, SUN Qiao. Uncertainty Evaluation Comparison of Speed Measurements Between 24 GHz and 77 GHz Millimeter-Wave Radar Sensors[J]. Metrology Science and Technology, 2021, 65(9): 3-7, 65. doi: 10.12338/j.issn.2096-9015.2020.9032

Uncertainty Evaluation Comparison of Speed Measurements Between 24 GHz and 77 GHz Millimeter-Wave Radar Sensors

doi: 10.12338/j.issn.2096-9015.2020.9032
  • Available Online: 2021-05-11
  • Publish Date: 2021-09-01
  • Accurate measurement of kinematic parameters of targets by environment-sensing sensors is the basic requirement for safe and efficient driving of intelligent connected vehicles. Among existing mainstream commercial vehicle-borne radar sensors, 24 GHz and 77 GHz millimetre-wave radars are different in speed, distance, and angle measurement performance because of their different working frequency bands and bandwidths. In order to evaluate the speed measurement performance of 24 GHz and 77 GHz millimetre-wave radars, we developed a simulated calibration facility for kinematic parameters of millimetre-wave radar targets based on the virtual instrument technique, and verifies The feasibility and the speed simulation accuracy of the simulated calibration facility were verified using simulated speed calibration results of 24 GHz and 77 GHz millimetre-wave radar samples. The results of the simulated calibrations and comparison of the uncertainty evaluations showed that the speed measurement repeatability and accuracy of the 77 GHz millimetre-wave radar sample are superior to that of the 24 GHz millimetre-wave radar sample.
  • loading
  • [1]
    Shouji M, Soichi O, et al. Near-field millimeter-wave imaging with 77-GHz-band monostatic-radar module[C]. 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013: 808-809.
    [2]
    Andres M, Feil P, Menzel W. 3D-scattering center detection of automotive targets using 77 GHz UWB radar sensors[C]. The 6th European Conference on Antennas and Propagation, 2011: 3690-3693.
    [3]
    Reina G, Johnson D, Underwood J. Radar sensing for intelligent vehicles in urban environments[J]. Sensors, 2015, 15: 14661-14678. doi: 10.3390/s150614661
    [4]
    Cai X Z, Kamal S. A machine learning based 77 GHz radar target classification for autonomous vehicles[C]. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2019: 371-372.
    [5]
    郑建明, 张宇飞, 覃斌, 等. 整车坏路可靠性试验的无人化技术研究[J]. 汽车技术, 2020(10): 33-38.
    [6]
    卢剑奇, 赵拥军, 党同心. 虚拟仪器技术在雷达系统测试中的应用[J]. 仪器仪表学报, 2005(S2): 258-261.
    [7]
    陈伟民, 李存龙. 基于微波雷达的位移/距离测量技术[J]. 电子测量与仪器学报, 2015, 29(9): 1251-1265.
    [8]
    于卫东, 涂亚庆, 詹启东, 等. 基于改进Rife算法的LFMCW雷达测距方法及实现[J]. 电子测量与仪器学报, 2015, 29(4): 550-557.
    [9]
    张科遥, 林福江, 白雪飞. 77 GHz FMCW车载雷达系统设计[J]. 信息技术与网络安全, 2020, 39(4): 53-57, 72.
    [10]
    杨阳, 张亮, 张洪军, 等. 烟道界面面积校准装置模型研究及不确定度评定[J]. 计量学报, 2020, 41(11): 1364-1369. doi: 10.3969/j.issn.1000-1158.2020.11.09
    [11]
    杜磊, 孙桥, 林峰, 等. 基于真实交通状况的固定式机动车现场测速标准装置[J]. 计量学报, 2018, 39(2): 207-212. doi: 10.3969/j.issn.1000-1158.2018.02.14
    [12]
    朱岩, 王天琪, 付巍. 精密机床振动检测试验系统测量结果的不确定度评定与分析[J]. 测试技术学报, 2016, 30(4): 347-352.
    [13]
    倪育才. 实用测量不确定度评定[M]. 北京: 中国计量出版社, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (809) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return